

    
      
          
            
  
Table of Contents


Container Camp Workshop


	Workshop Code of Conduct

	Pre-Workshop Setup

	Agenda

	About CyVerse






Workshop Topics


	Training session in Docker

	Training session in Singularity

	Training session in scaling up your analysis using containers

	Training session in Biocontainers






Atmosphere


	Booting an Atmosphere computer instance for your use!






Docker


	Introduction to Docker

	Advanced Docker






Singularity


	Introduction to Singularity

	Advanced Singularity






Deploying


	Deploying apps in Discovery Environment






Container Scaling


	OSG (Open Science Grid) Singularity Infrastructure

	Pegasus Workflows with Application Containers

	Distributed Computing with Makeflow and Work Queue






Biocontainers


	Introduction to Biocontainers

	Biocontainers in HPC






Useful Resources


	Docker related resources

	Singularity related resources

	Other resources






Instructions and Reporting


	For instructors!

	Problems? Bugs? Questions?









          

      

      

    

  

    
      
          
            
  [image: CyVerse logo]


Workshop Code of Conduct

All attendees, speakers, sponsors and volunteers at our workshop are required
to follow this code of conduct. Organisers will enforce this code
throughout the event. We expect cooperation from all participants to
help ensure a safe environment for everyone.

This Code of Conduct is taken from
http://confcodeofconduct.com/. See http://www.ashedryden.com/blog/codes-of-conduct-101-faq
for more information on codes of conduct.

FAIR principles

Container Camp supports FAIR data principles by providing services that help make data
Findable, Accessible, Interoperable, and Reusable. Participants will get an introduction
to containers and learn how to create and manage containers.

Learning objectives

Participants will learn key containerization concepts for developing
reproducible analysis pipelines, with emphasis on container lifecycle
management from design to execution and scaling.

The workshop will cover key concepts about containers such as defining the
architecture of containers, building images and pushing them to
public and private repositories as well as how to scale your
analysis from laptop to cloud and to HPC systems using containers.

Who should attend?

Faculty, researchers, postdocs, and graduate students who use and analyze data of all
types (genomics, image data, from animals, plants, etc.).

Workshop level

This workshop is focused on beginner-level users with little to no previous container
experience.

Intermeidate and advanced users who attend will gain a better understanding of and ability with container capabilities
and resources, including deploying their own tools and extending these analyses
into Cloud and HPC.

Need help?

Couldn’t find what you were looking for?


	You can reach the lead instructor, Upendra Devisetty, at upendra at cyverse dot org.


	You can also talk to any of the instructors or TAs if you need immediate help.


	Chat with us and our community on Slack.


	Post an issue on the documentation issue tracker [https://github.com/CyVerse-learning-materials/container_camp_workshop_2018/issues] on GitHub








          

      

      

    

  

    
      
          
            
  
Pre-Workshop Setup

Please complete the minimum Setup Instructions to prepare for the Container Camp workshop at CyVerse, The University of Arizona, which will run from March 7th to 9th, 2018.








	Prerequisite

	Notes

	Links





	Wi-Fi-enabled laptop

	You should be able to use any laptop using Windows/MacOS/Linux.
We strongly recommend Firefox or Chrome browser; We do not recommend
Microsoft Edge Browser. It is recommended that you have administrative/install
permissions on your laptop.

	
	Download FireFox [https://www.mozilla.org/en-US/firefox/new/?scene=2]


	Download Chrome [https://www.google.com/chrome/browser/]







	CyVerse Account

	Please ensure that you have a CyVerse account and have verfied your account
by completing the verification steps in the email you got when you registered.

	Register for your cyverse account at http://user.cyverse.org/. You can test your account by logging into http://user.cyverse.org/.



	Github Account

	Please ensure that you have a Github account if you don’t have one already

	Register for your Github account at https://github.com/.



	Dockerhub Account

	Please ensure that you have a Dockerhub account if you don’t have one already

	Register for your Dockerhub account at https://hub.docker.com/.



	Quay.io Account

	This is completely optional but recommended and can use github to log-in to quay.io account

	Register for your Quay.io account at https://quay.io/.



	XSEDE Account

	Please ensure that you have a XSEDE account by registering at XSEDE portal to access Jetstream cloud
computing

	Register for your XSEDE account at https://portal.xsede.org/.



	TACC Account

	Please ensure that you have a TACC account to access Stampede2 HPC computer at TACC

	Register for your TACC account at https://portal.tacc.utexas.edu/.



	Text Editor

	Please ensure that you have a Text editor of your choice. Any decent text editor would be sufficient and
recommended ones include Sublime2 and Atom

	
	Register for Sublime at https://www.sublimetext.com/.


	Register for Atom at https://atom.io/.







	Slack for networking

	We will be using Slack extensively for communication and networking purposes

	Register for Slack at https://slack.com/.






Optional Download Extras

Listed below are some extra downloads that aren’t required for the workshop, but which
provide some options for functionalities we will cover.








	Tool

	Notes

	Link





	SSH Clients (Windows)

	PuTTY allows SSH connection to a remote machine, and is designed for
Windows users who do not have a Mac/Linux terminal. MobaXterm is a single
Windows application that provides a ton of functions for programmers, webmasters,
IT administrators, and anybody is looking to manage system remotely

	
	Download PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html]


	Download mobaXterm [https://mobaxterm.mobatek.net]


	Update Windows 10 to use Linux Bash [https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/]







	Cyberduck

	Cyberduck is a third-party tool for uploading/downloading data to CyVerse Data Store.
Currently, this tool is available for Windows/MacOS only. You will need
to download Cyberduck and the connection profile. We will go through
configuration and installation at the workshop.

	
	Download Cyberduck [https://cyberduck.io/]


	Download CyVerse Cyberduck connection profile [https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2]







	iCommands

	iCommands are third-party software for command-line connection to the
CyVerse Data Store.

	Download and installation instructions available at CyVerse Learning Center [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html]










          

      

      

    

  

    
      
          
            
  
Agenda

Below are the schedule and classroom materials for Container Camp at The University of Arizona, which will run from March 7th to 9th, 2018. The workshop will take place in Drachman A116. Click this link to the building - https://goo.gl/7Yv4PA

This workshop runs under a Code of Conduct. Please respect it and be excellent to each other!

Twitter hash tag: #cc2018

We will use this for notetaking - https://goo.gl/6Bd9tX









	Day

	Time

	Topic/Activity

	Notes/Links





	03/07/18 (Wednesday)

	8:30-9:00

	General introduction to CyVerse and Camp logistics (Nirav Merchant & Upendra Devisetty)

	Intro slides [https://docs.google.com/presentation/d/1shHJKmmLO8VfBfhhhm7cjFhD-5F1b-2fHWtRtaW-pIA/edit?usp=sharing]



	
	9:00-9:30

	General overview of container technology landscape (Nirav Merchant)

	Intro slides [https://docs.google.com/presentation/d/1shHJKmmLO8VfBfhhhm7cjFhD-5F1b-2fHWtRtaW-pIA/edit?usp=sharing]



	
	9:30-9:45

	Coffee and snack break with networking

	served in A127-29 across the hall (pls no food/bev in A116)



	
	9:45-11:00

	Introduction to Docker (Kapeel Chougule)

	
	Docker intro slides [https://docs.google.com/presentation/d/1OqEiVZRq9ibmVk8A0YyeXoNBXfm5JQAXWhow-P6_Iho/edit?usp=sharing]


	Docker intro demo







	
	11:00-12.00

	Singularity (Vanessa Sochat)

	Remote talk



	
	12:00-1:00

	Lunch break on your own

	


	
	1:00-2:30

	Advanced Docker (Upendra Devisetty)

	Advanced docker



	
	2:30-3:00

	Coffee break (15 min) and afternoon session planning

	served in A127-29



	
	3:00-5:00

	BYOD (Hands on Project)

	


	
	5:00-6:00

	Catchup with instructors

	


	03/08/18 (Thursday)

	8:30-9:00

	Recap and planning day 2

	


	
	9:00-9:30

	General overview of Singularity (John Fonner)

	Singularity Overview Slides [https://docs.google.com/presentation/d/175QD_mm9aKbV-8WW7hKR04naR08UjTRcGc4CIhMMKKk/edit?usp=sharing]



	
	9:30-10.00

	Singularity setup (Tyson Swetnam)

	Singularity Introduction



	
	10:00-10:30

	Coffee + snack break with networking

	served in A127-29



	
	10:30-12.00

	Singularity basics (Tyson Swetnam)

	
	Gitpitch slides [https://gitpitch.com/tyson-swetnam/cc-camp#/]


	University of Arizona High Performance Computing [https://docs.hpc.arizona.edu/]


	Introduction to Singularity







	
	12:00-1:00

	Lunch break on your own

	


	
	1:00-2:30

	Advanced Singularity (John Fonner)

	Advanced Singularity



	
	2:30-3:00

	Coffee + snack break with networking

	served in A127-29



	
	3:00-5:00

	BYOD (Hands on Project)

	


	
	5:00-6:00

	Catchup with instructors

	


	03/09/18 (Friday)

	8:30-9:30

	Day 2 review and putting it all together

	


	
	9:30-10:00

	500,000 containers a day? OSG Singularity Infrastructure (Mats Rynge)

	
	Slides [https://docs.google.com/presentation/d/1DOfnSYAWl7lqtowbb-T5xpUtnkfRBDg9_6wo_Y7hviI/edit?usp=sharing]


	Exercises







	
	10.00-10:30

	Pegasus Workflows with Application Containers (Mats Rynge)

	
	Slides [https://docs.google.com/presentation/d/1SmmFizUvDmq5p4uNmqBrSsVWMOu89vAuUD-oDGLf4D4/edit?usp=sharing]


	Exercises







	
	10:30-10:45

	Coffee + snack break with networking

	served in A127-29



	
	10:45-11:30

	Distributed computing with containers (Nick Hazekamp & Kyle Sweeney remotely)

	Introduction to Container scaling



	
	11:30-12:30

	Lunch break

	CyVerse-hosted Food Truck - stay tuned for instructions



	
	12:30-1:15

	Distributed computing with containers (Nick Hazekamp & Kyle Sweeney remotely)

	Introduction to Container scaling



	
	1:15-2:30

	Biocontainers (Upendra Devisetty & John Fonner)

	
	Bicontainers Slides [https://drive.google.com/file/d/1p3OOlwRIXXo6tlPmK2edRYuVSSE9CPOB/view?usp=sharing]


	Biocontainers Hands-on


	Biocontainers on HPC







	
	2:30-3:00

	Coffee + snack break with networking

	served in A127-29



	
	3:00-5:00

	BYOD (Hands on Project) and end of workshop

	









          

      

      

    

  

    
      
          
            
  
About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national
cyberinfrastructure for life sciences research and train scientists in
its use. CyVerse provides life scientists with powerful computational
infrastructure to handle huge datasets and complex analyses, thus
enabling data-driven discovery. Our powerful extensible platforms
provide data storage, bioinformatics tools, image analyses, cloud
services, APIs, and more.

While originally created with the name iPlant Collaborative to serve
U.S. plant science communities, CyVerse cyberinfrastructure is germane
to all life sciences disciplines and works equally well on data from
plants, animals, or microbes. By democratizing access to supercomputing
capabilities, we provide a crucial resource to enable scientists to find
solutions for the future. CyVerse is of, by, and for the community, and community-driven needs
shape our mission. We rely on your feedback to provide the
infrastructure you need most to advance your science, development, and
educational agenda.

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under
Award Numbers DBI-0735191 and DBI-1265383.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation
policy [http://www.cyverse.org/acknowledge-and-cite-cyverse]





          

      

      

    

  

    
      
          
            
  
Training session in Docker

Trainers (Kapeel Chougule and Upendra Devisetty)

In this session we will explain the various aspects of the Docker. Starting with the basics of Docker which focus on the installation and configuration of Docker, the session will gradually move to advanced topics such as managing data using volumes and pushing and pull containers from registries. Overall this session covers the development aspects of Docker and how you can get up and running on the development environments using Docker containers.


	Docker basics/Introduction (Kapeel)




This is the introductory session for the concept of Docker. The topics include Docker installation, running prebuilt Docker containers, deploying web applications with Docker, building and running your own Docker containers, etc.


	Advanced Docker (Upendra)




This is the advanced session for the concept of Docker. The topics include pushing and pulling Docker containers to public and private registries, automated Docker image building from github/bitbucket repositories, managing data in Docker containers, Docker compose for building multiple Docker containers, improving your data science workflows using Docker containers, etc.





          

      

      

    

  

    
      
          
            
  
Training session in Singularity

Trainers (Tyson Swetnam and John Fonner)

In this session we will show you how to containerize your software/applications using Singularity, push them to Singularityhub and deploy them on cloud and HPC.


	Singularity basics/Introduction (Tyson Swetnam)




This would be the introductory session for concept of Singularity. The topics include installation Singularity on various platforms, running prebuilt singularity containers, building singularity containers locally etc.


	Advanced Singularity (John Fonner)




This is the advanced session for the concept of Singularity. The topics include pushing and pulling Singularity images to and from Singularity hub, converting Docker containers to Singularity containers, mounting data on to Singularity containers etc.





          

      

      

    

  

    
      
          
            
  
Training session in scaling up your analysis using containers

Trainers (Mats Rynge, Nicholas Hazekamp and Kyle Sweeney)

In this exciting session of the workshop, we will show you how to scale your analyses (simple apps and complex workflow) using Docker swarm [https://docs.docker.com/engine/swarm/], Google Kubernetes [https://kubernetes.io/] and Workflows Management Systems such as Pegasus [https://pegasus.isi.edu/], Work-Queue [https://ccl.cse.nd.edu/software/workqueue/] and Makeflow [https://ccl.cse.nd.edu/software/makeflow/] from laptop to Cloud to HPC resources such as Stampede2, OSG and campus clusters and also show how using several compute clusters, you can scale your analysis significantly and efficiently. Some of the topics include:


	OSG (Open Science Grid) Singularity Infrastructure (Mats Rynge)


	Pegasus Workflows with Application Containers (Mats Rynge)


	Distributed computing with containers (Nicholas and Kyle remotely)








          

      

      

    

  

    
      
          
            
  
Training session in Biocontainers

Trainers (Upendra Devisetty and John Fonner)

In this session we will show you how to containerize your bioinformatic software/applications (with special focus in Proteomics, Genomics, Transcriptomics and Metabolomics), push them to Dockerhub and other registries and finally deploy them on Cloud and HPC.


	Introduction to Biocontainers (Upendra Devisetty)




This would be the introductory session for concept of Biocontainers. The topics include what are biocontainers and how are they different from Docker containers, developing biocontainers, running Biocontainers, Biocontainer registry etc.


	Biocontainers in HPC environment (John Fonner)




This would be the session for concept of Biocontainers in HPC environment.





          

      

      

    

  

    
      
          
            
  
Booting an Atmosphere computer instance for your use!

What we’re going to do here is walk through of how to start up a running
computer (an “instance”) on the CyVerse Atmosphere Cloud service.

Below, we’ve provided screenshots of the whole process. You can click
on them to zoom in a bit. The important areas to fill in are highlighted.

First, go to the Atmosphere [https://atmo.cyverse.org/application/images] application and then click login


Important

You will need to have access to the Atmosphere workshop cloud. If you are not able to log-in for some reason, please let us know and we will fix it immediately.




	Fill in the username and password and click “LOGIN”




Fill in the username, which is your CyVerse username,
and then enter the password (which is your CyVerse password).

[image: atmo-1]


	Select Projects and “Create New Project”





	Now, this is something you only need to do once.


	We’ll do this with Projects, which gives you a bit of a workspace in which to keep things that belong to “you”.


	Click on the “Projects” tab on the top and then click “CREATE NEW PROJECT”




[image: atmo_cp0]


	Enter the name “CCW2018” into the Project Name, and something simple like “Container Camp Workshop 2018” into the description. Then click ‘create’.




[image: atmo_cp]


	Select the newly created project





	Click on your newly created project!


	Now, click ‘New’ and then “Instance” from the dropdown menu to start up a new virtual machine.




[image: atmo_launch0]


	Find the “Ubuntu 16.04” image, click on it




[image: atmo_launch1]


	Name it something simple such as “workshop tutorial” and select ‘tiny1 (CPU: 1, Mem: 4GB, Disk: 30GB)’.


	Leave rest of the fields as default.




[image: atmo_launch]


	Wait for it to become active


	It will now be booting up! This will take 2-10 minutes, depending.




Just wait! Don’t reload or anything.

[image: atmo-6]


	Click on your new instance to get more information!


	Now, you can either click “Open Web Shell”, or, if you know how to use ssh,




you can ssh in with your CyVerse username on the IP address of the machine

[image: atmo-7]

Deleting your instance


	To completely remove your instance, you can select the “delete” buttom from the instance details page.


	This will open up a dialogue window. Select the “Yes, delete this instance” button.




[image: atmo-8]


	It may take Atmosphere a few minutes to process your request. The instance should disappear from the project when it has been successfully deleted.




[image: atmo-9]


Note

It is advisable to delete the machine if you are not planning to use it in future to save valuable resources. However if you want to use it in future, you can suspend it.







          

      

      

    

  

    
      
          
            
  
Introduction to Docker

[image: docker]


1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text editor. Prior experience in developing web applications will be helpful but is not required.




2. Docker Installation

Getting all the tooling setup on your computer can be a daunting task, but not with Docker. Getting Docker up and running on your favorite OS (Mac/Windows/Linux) is very easy.

The getting started guide on Docker has detailed instructions for setting up Docker on Mac [https://docs.docker.com/docker-for-mac/install/]/Windows [https://docs.docker.com/docker-for-windows/install/]/Linux [https://docs.docker.com/install/linux/docker-ce/ubuntu/].


Note

If you’re using Docker for Windows make sure you have shared your drive [https://docs.docker.com/docker-for-windows/#shared-drives].

If you’re using an older version of Windows or MacOS you may need to use Docker Machine [https://docs.docker.com/machine/overview/] instead.

All commands work in either bash or Powershell on Windows.




Note

Depending on how you’ve installed Docker on your system, you might see a permission denied error after running the above command. If you’re on Linux, you may need to prefix your Docker commands with sudo. Alternatively to run docker command without sudo, you need to add your user (who has root privileges) to docker group.
For this run:

Create the docker group:

$ sudo groupadd docker





Add your user to the docker group:

$ sudo usermod -aG docker $USER





Log out and log back in so that your group membership is re-evaluated




2.1 Testing Docker installation

Once you are done installing Docker, test your Docker installation by running the following command to make sure you are using version 1.13 or higher:

$ docker --version
Docker version 17.09.0-ce, build afdb6d4





When run without --version you should see a whole bunch of lines showing the different options available with docker. Alternatively you can test your installation by running the following:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 3. The Docker daemon created a new container from that image which runs the
    executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
    to your terminal.
.......










3. Running Docker containers from prebuilt images

Now that you have everything setup, it’s time to get our hands dirty. In this section, you are going to run a container from Alpine Linux [http://www.alpinelinux.org/] (a lightweight linux distribution) image on your system and get a taste of the docker run command.

But wait, what exactly is a container and image?

Containers - Running instances of Docker images — containers run the actual applications. A container includes an application and all of its dependencies. It shares the kernel with other containers, and runs as an isolated process in user space on the host OS.

Images - The file system and configuration of our application which are used to create containers. To find out more about a Docker image, run docker inspect hello-world. In the demo above, you could have used the docker pull command to download the hello-world image. However when you executed the command docker run hello-world, it also did a docker pull behind the scenes to download the hello-world image with latest tag (we will learn more about tags little later).

Now that we know what a container and image is, let’s run the following command in our terminal:

$ docker run alpine ls -l
total 52
drwxr-xr-x    2 root     root          4096 Dec 26  2016 bin
drwxr-xr-x    5 root     root           340 Jan 28 09:52 dev
drwxr-xr-x   14 root     root          4096 Jan 28 09:52 etc
drwxr-xr-x    2 root     root          4096 Dec 26  2016 home
drwxr-xr-x    5 root     root          4096 Dec 26  2016 lib
drwxr-xr-x    5 root     root          4096 Dec 26  2016 media
........





Similar to docker run hello-world command in the demo above, docker run alpine ls -l command fetches the alpine:latest image from the Docker registry first, saves it in our system and then runs a container from that saved image.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified and you saw the listing

You can use the docker images command to see a list of all images on your system

$ docker images
REPOSITORY              TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
alpine                  latest              c51f86c28340        4 weeks ago         1.109 MB
hello-world             latest              690ed74de00f        5 months ago        960 B





Let’s try something more exciting.

$ docker run alpine echo "Hello world"
Hello world





OK, that’s some actual output. In this case, the Docker client dutifully ran the echo command in our alpine container and then exited it. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual machine, running a command and then killing it. Now you know why they say containers are fast!

Try another command.

$ docker run alpine sh





Wait, nothing happened! Is that a bug? Well, no. These interactive shells will exit after running any scripted commands such as sh, unless they are run in an interactive terminal - so for this example to not exit, you need to docker run -it alpine sh. You are now inside the container shell and you can try out a few commands like ls -l, uname -a and others.

Before doing that, now it’s time to see the docker ps command which shows you all containers that are currently running.

$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS              PORTS               NAMES





Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps -a

$ docker ps -a
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS                      PORTS               NAMES
36171a5da744        alpine              "/bin/sh"                5 minutes ago       Exited (0) 2 minutes ago                        fervent_newton
a6a9d46d0b2f        alpine             "echo 'hello from alp"    6 minutes ago       Exited (0) 6 minutes ago                        lonely_kilby
ff0a5c3750b9        alpine             "ls -l"                   8 minutes ago       Exited (0) 8 minutes ago                        elated_ramanujan
c317d0a9e3d2        hello-world         "/hello"                 34 seconds ago      Exited (0) 12 minutes ago                       stupefied_mcclintock





What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers exited a few minutes ago.

If you want to run scripted commands such as sh, they should be run in an interactive terminal. In addition, interactive terminal allows you to run more than one command in a container. Let’s try that now:

$ docker run -it alpine sh
/ # ls
bin    dev    etc    home   lib    media  mnt    proc   root   run    sbin   srv    sys    tmp    usr    var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux





Running the run command with the -it flags attaches us to an interactive tty in the container. Now you can run as many commands in the container as you want. Take some time to run your favorite commands.

Exit out of the container by giving the exit command.

/ # exit






Note

If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps -l
CONTAINER ID        IMAGE                 COMMAND                  CREATED             STATUS                          PORTS                    NAMES
de4bbc3eeaec        alpine                "/bin/sh"                3 minutes ago       Exited (0) About a minute ago                            pensive_leavitt





If you want to keep the container active, then you can use keys ctrl +p, ctrl +q. To make sure that it is not exited run the same docker ps -a command again:

$ docker ps -l
CONTAINER ID        IMAGE                 COMMAND                  CREATED             STATUS                         PORTS                    NAMES
0db38ea51a48        alpine                "sh"                     3 minutes ago       Up 3 minutes                                            elastic_lewin





Now if you want to get back into that container, then you can type docker attach <container id>. This way you can save your container:

$ docker attach 0db38ea51a48










4. Deploying web applications with Docker

Great! so you have now looked at docker run, played with a Docker containers and also got the hang of some terminology. Armed with all this knowledge, you are now ready to get to the real stuff — deploying web applications with Docker.


4.1 Deploying static website

Let’s start by taking baby-steps. First, we’ll use Docker to run a static website in a container. The website is based on an existing image and in the next section we will see how to build a new image and run a website in that container. We’ll pull a Docker image from Dockerhub, run the container, and see how easy it is to set up a web server.


Note

Code for this section is in this repo in the static-site directory [https://github.com/docker/labs/tree/master/beginner/static-site]



The image that you are going to use is a single-page website that was already created for this demo and is available on the Dockerhub as dockersamples/static-site [https:/hub.docker.com/community/images/dockersamples/static-site]. You can pull and run the image directly in one go using docker run as follows.

$ docker run -d dockersamples/static-site






Note

The -d flag enables detached mode, which detaches the running container from the terminal/shell and returns your prompt after the container starts.



So, what happens when you run this command?

Since the image doesn’t exist on your Docker host (laptop/computer), the Docker daemon first fetches it from the registry and then runs it as a container.

Now that the server is running, do you see the website? What port is it running on? And more importantly, how do you access the container directly from our host machine?

Actually, you probably won’t be able to answer any of these questions yet! ☺ In this case, the client didn’t tell the Docker Engine to publish any of the ports, so you need to re-run the docker run command to add this instruction.

Let’s re-run the command with some new flags to publish ports and pass your name to the container to customize the message displayed. We’ll use the -d option again to run the container in detached mode.

First, stop the container that you have just launched. In order to do this, we need the container ID.

Since we ran the container in detached mode, we don’t have to launch another terminal to do this. Run docker ps to view the running containers.

$ docker ps
CONTAINER ID        IMAGE                  COMMAND                  CREATED             STATUS              PORTS               NAMES
a7a0e504ca3e        dockersamples/static-site   "/bin/sh -c 'cd /usr/"   28 seconds ago      Up 26 seconds       80/tcp, 443/tcp     stupefied_mahavira





Check out the CONTAINER ID column. You will need to use this CONTAINER ID value, a long sequence of characters, to identify the container you want to stop, and then to remove it. The example below provides the CONTAINER ID on our system; you should use the value that you see in your terminal.

$ docker stop a7a0e504ca3e
$ docker rm   a7a0e504ca3e






Note

A cool feature is that you do not need to specify the entire CONTAINER ID. You can just specify a few starting characters and if it is unique among all the containers that you have launched, the Docker client will intelligently pick it up.



Now, let’s launch a container in detached mode as shown below:

$ docker run --name static-site -d -P dockersamples/static-site
e61d12292d69556eabe2a44c16cbd54486b2527e2ce4f95438e504afb7b02810





In the above command:


	-d will create a container with the process detached from our terminal


	-P will publish all the exposed container ports to random ports on the Docker host


	--name allows you to specify a container name




Now you can see the ports by running the docker port command.

$ docker port static-site
443/tcp -> 0.0.0.0:32770
80/tcp -> 0.0.0.0:32773





If you are running Docker for Mac, Docker for Windows, or Docker on Linux, open a web browser and go to port 80 on your host. The exact address will depend on how you’re running Docker


	Laptop or Native linux: http://localhost:[YOUR_PORT_FOR 80/tcp]. On my system this is http://localhost:32773.




[image: static_site_docker]


	Cloud server: If you are running the same set of commands on Atmosphere/Jetstream or on any other cloud service, you can open ipaddress:[YOUR_PORT_FOR 80/tcp]. On my Atmosphere instance this is http://128.196.142.26:32769/. We will see more about deploying Docker containers on Atmosphere/Jetstream Cloud in the Advanced Docker session.




[image: static_site_docker1]


Note

-P` `will publish all the exposed container ports to random ports on the Docker host. However if you want to assign a fixed port then you can use ``-p option. The format is -p <host port>:<container port>. For example:



$ docker run --name static-site2 -d -p 8088:80 dockersamples/static-site





If you are running Docker for Mac, Docker for Windows, or Docker on Linux, you can open http://localhost:[YOUR_PORT_FOR 80/tcp]. For our example this is http://localhost:8088.

If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:[YOUR_PORT_FOR 80/tcp]. For our example this is http://128.196.142.26:8088/

If you see “Hello Docker!” then you’re done!

Let’s stop and remove the containers since you won’t be using them anymore.

$ docker stop static-site static-site2
$ docker rm static-site static-site2





Let’s use a shortcut to both stop and delete that container from your system:

$ docker rm -f static-site static-site2





Run docker ps to make sure the containers are gone.

$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS              PORTS               NAMES








4.2 Deploying dynamic website

One area where Docker shines is when you need to use a command line utility that has a large number of dependencies.

In this section, let’s dive deeper into what Docker images are. Later on we will build our own image and use that image to run an application locally (deploy a dynamic website).


4.2.1 Docker images

Docker images are the basis of containers. In the previous example, you pulled the dockersamples/static-site image from the registry and asked the Docker client to run a container based on that image. To see the list of images that are available locally on your system, run the docker images command.

$ docker images
REPOSITORY                      TAG                 IMAGE ID            CREATED             SIZE
dockersamples/static-site   latest              92a386b6e686        2 hours ago        190.5 MB
nginx                           latest              af4b3d7d5401        3 hours ago        190.5 MB
hello-world                     latest              690ed74de00f        5 months ago       960 B
.........





Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a git repository - images can be committed with changes and have multiple versions. When you do not provide a specific version number, the client defaults to latest.

For example you could pull a specific version of ubuntu image as follows:

$ docker pull ubuntu:16.04





If you do not specify the version number of the image, as mentioned, the Docker client will default to a version named latest.

So for example, the docker pull command given below will pull an image named ubuntu:latest

$ docker pull ubuntu





To get a new Docker image you can either get it from a registry (such as the Docker hub) or create your own. There are hundreds of thousands of images available on Docker hub. You can also search for images directly from the command line using docker search.

$ docker search ubuntu
  NAME                                                   DESCRIPTION                                     STARS               OFFICIAL            AUTOMATED
  ubuntu                                                 Ubuntu is a Debian-based Linux operating sys…   7310                [OK]
  dorowu/ubuntu-desktop-lxde-vnc                         Ubuntu with openssh-server and NoVNC            163                                     [OK]
  rastasheep/ubuntu-sshd                                 Dockerized SSH service, built on top of offi…   131                                     [OK]
  ansible/ubuntu14.04-ansible                            Ubuntu 14.04 LTS with ansible                   90                                      [OK]
  ubuntu-upstart                                         Upstart is an event-based replacement for th…   81                  [OK]
  neurodebian                                            NeuroDebian provides neuroscience research s…   43                  [OK]
  ubuntu-debootstrap                                     debootstrap --variant=minbase --components=m…   35                  [OK]
  1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5   ubuntu-16-nginx-php-phpmyadmin-mysql-5          26                                      [OK]
  nuagebec/ubuntu                                        Simple always updated Ubuntu docker images w…   22                                      [OK]
  tutum/ubuntu                                           Simple Ubuntu docker images with SSH access     18
  ppc64le/ubuntu                                         Ubuntu is a Debian-based Linux operating sys…   11
  i386/ubuntu                                            Ubuntu is a Debian-based Linux operating sys…   9
  1and1internet/ubuntu-16-apache-php-7.0                 ubuntu-16-apache-php-7.0                        7                                       [OK]
  eclipse/ubuntu_jdk8                                    Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, …   5                                       [OK]
  darksheer/ubuntu                                       Base Ubuntu Image -- Updated hourly             3                                       [OK]
  codenvy/ubuntu_jdk8                                    Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, …   3                                       [OK]
  1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4      ubuntu-16-nginx-php-5.6-wordpress-4             2                                       [OK]
  1and1internet/ubuntu-16-nginx                          ubuntu-16-nginx                                 2                                       [OK]
  pivotaldata/ubuntu                                     A quick freshening-up of the base Ubuntu doc…   1
  smartentry/ubuntu                                      ubuntu with smartentry                          0                                       [OK]
  pivotaldata/ubuntu-gpdb-dev                            Ubuntu images for GPDB development              0
  1and1internet/ubuntu-16-healthcheck                    ubuntu-16-healthcheck                           0                                       [OK]
  thatsamguy/ubuntu-build-image                          Docker webapp build images based on Ubuntu      0
  ossobv/ubuntu                                          Custom ubuntu image from scratch (based on o…   0
  1and1internet/ubuntu-16-sshd                           ubuntu-16-sshd                                  0                                       [OK]





An important distinction with regard to images is between base images and child images and official images and user images (Both of which can be base images or child images.).


Important

Base images are images that have no parent images, usually images with an OS like ubuntu, alpine or debian.

Child images are images that build on base images and add additional functionality.

Official images are Docker sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for reviewing and publishing all Official Repositories content. This team works in collaboration with upstream software maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user name. In the list of images above, the python, node, alpine and nginx images are official (base) images. To find out more about them, check out the Official Images Documentation.

User images are images created and shared by users like you. They build on base images and add additional functionality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub user or organization name.






4.2.2 Meet our Flask app

Now that you have a better understanding of images, it’s time to create an image that sandboxes a small Flask [http://flask.pocoo.org/] application. Flask is a lightweight Python web framework. We’ll do this by first pulling together the components for a random cat picture generator built with Python Flask, then dockerizing it by writing a Dockerfile and finally we’ll build the image and run it.


	Create a Python Flask app that displays random cat


	Build the image


	Run your image





Note

I have already written the Flask app for you, so you should start by cloning the git repository at https://github.com/upendrak/flask-app. You can do this with git clone if you have git installed, or by clicking the “Download ZIP” button on GitHub




	Create a Python Flask app that displays random cat




For the purposes of this workshop, we’ve created a fun little Python Flask app that displays a random cat .gif every time it is loaded - because, you know, who doesn’t like cats?

Start by creating a directory called flask-app where we’ll create the following files:


	app.py


	requirements.txt


	templates/index.html


	Dockerfile




$ mkdir flask-app && cd flask-app





1.1 app.py

Create the app.py file with the following content. You can use any of favorite text editor to create this file.

from flask import Flask, render_template
import random

app = Flask(__name__)

# list of cat images
images = [
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-buzz-26388-1381844103-11.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr01/15/9/anigif_enhanced-buzz-31540-1381844535-8.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-buzz-26390-1381844163-18.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/10/anigif_enhanced-buzz-1376-1381846217-0.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/9/anigif_enhanced-buzz-3391-1381844336-26.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/10/anigif_enhanced-buzz-29111-1381845968-0.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/9/anigif_enhanced-buzz-3409-1381844582-13.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr02/15/9/anigif_enhanced-buzz-19667-1381844937-10.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-buzz-26358-1381845043-13.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/9/anigif_enhanced-buzz-18774-1381844645-6.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/9/anigif_enhanced-buzz-25158-1381844793-0.gif",
    "http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/10/anigif_enhanced-buzz-11980-1381846269-1.gif"
]

@app.route('/')
def index():
    url = random.choice(images)
    return render_template('index.html', url=url)

if __name__ == "__main__":
    app.run(host="0.0.0.0")





1.2. requirements.txt

In order to install the Python modules required for our app, we need to create a file called requirements.txt and add the following line to that file:

Flask==0.10.1





1.3. templates/index.html

Create a directory called templates and create an index.html file in that directory with the following content in it:

$ mkdir templates && cd templates





<html>
  <head>
    <style type="text/css">
      body {
        background: black;
        color: white;
      }
      div.container {
        max-width: 500px;
        margin: 100px auto;
        border: 20px solid white;
        padding: 10px;
        text-align: center;
      }
      h4 {
        text-transform: uppercase;
      }
    </style>
  </head>
  <body>
    <div class="container">
      <h4>Cat Gif of the day</h4>
      <img src="{{url}}" />
      <p><small>Courtesy: <a href="http://www.buzzfeed.com/copyranter/the-best-cat-gif-post-in-the-history-of-cat-gifs">Buzzfeed</a></small></p>
    </div>
  </body>
</html>






Note

If you want, you can run this app through your laptop’s native Python installation first just to see what it looks like. Run sudo pip install -r requirements.txt and then run python app.py.

You should then be able to open a web browser, go to http://localhost:5000, and see the message “Hello! I am a Flask application”.

This is totally optional - but some people like to see what the app’s supposed to do before they try to Dockerize it.



1.4. Dockerfile

A Dockerfile is a text file that contains a list of commands that the Docker daemon calls while creating an image. The Dockerfile contains all the information that Docker needs to know to run the app — a base Docker image to run from, location of your project code, any dependencies it has, and what commands to run at start-up. It is a simple way to automate the image creation process. The best part is that the commands you write in a Dockerfile are almost identical to their equivalent Linux commands. This means you don’t really have to learn new syntax to create your own Dockerfiles.

We want to create a Docker image with this web app. As mentioned above, all user images are based on a base image. Since our application is written in Python, we will build our own Python image based on Alpine. We’ll do that using a Dockerfile.

Create a file called Dockerfile in the flask directory, and add content to it as described below. Since you are currently in templates directory, you need to go up one directory up before you can create your Dockerfile

cd ..





# our base image
FROM alpine:3.5

# install python and pip
RUN apk add --update py2-pip

# install Python modules needed by the Python app
COPY requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt

# copy files required for the app to run
COPY app.py /usr/src/app/
COPY templates/index.html /usr/src/app/templates/

# tell the port number the container should expose
EXPOSE 5000

# run the application
CMD ["python", "/usr/src/app/app.py"]





Now let’s see what each of those lines mean..

1.4.1 We’ll start by specifying our base image, using the FROM keyword:

FROM alpine:3.5





1.4.2. The next step usually is to write the commands of copying the files and installing the dependencies. But first we will install the Python pip package to the alpine linux distribution. This will not just install the pip package but any other dependencies too, which includes the python interpreter. Add the following RUN command next:

RUN apk add --update py2-pip





1.4.3. Let’s add the files that make up the Flask Application. Install all Python requirements for our app to run. This will be accomplished by adding the lines:

COPY requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt





1.4.4. Copy the files you have created earlier into our image by using COPY command.

COPY app.py /usr/src/app/
COPY templates/index.html /usr/src/app/templates/





1.4.5. Specify the port number which needs to be exposed. Since our flask app is running on 5000 that’s what we’ll expose.

EXPOSE 5000





1.4.6. The last step is the command for running the application which is simply - python ./app.py. Use the CMD command to do that:

CMD ["python", "/usr/src/app/app.py"]





The primary purpose of CMD is to tell the container which command it should run by default when it is started.


	Build the image




Now that you have your Dockerfile, you can build your image. The docker build command does the heavy-lifting of creating a docker image from a Dockerfile.

The docker build command is quite simple - it takes an optional tag name with the -t flag, and the location of the directory containing the Dockerfile - the . indicates the current directory:


Note

When you run the docker build command given below, make sure to replace <YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub. If you haven’t done that yet, please go ahead and create an account in Dockerhub [https://hub.docker.com].



YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>





For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=upendradevisetty





Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/myfirstapp .
Sending build context to Docker daemon   7.68kB
Step 1/8 : FROM alpine:3.5
 ---> 88e169ea8f46
Step 2/8 : RUN apk add --update py2-pip
 ---> Using cache
 ---> 8b1f026c3899
Step 3/8 : COPY requirements.txt /usr/src/app/
 ---> Using cache
 ---> 6923f451ee09
Step 4/8 : RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt
 ---> Running in fb6b7b8beb3c
Collecting Flask==0.10.1 (from -r /usr/src/app/requirements.txt (line 1))
  Downloading Flask-0.10.1.tar.gz (544kB)
Collecting Werkzeug>=0.7 (from Flask==0.10.1->-r /usr/src/app/requirements.txt (line 1))
  Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)
Collecting Jinja2>=2.4 (from Flask==0.10.1->-r /usr/src/app/requirements.txt (line 1))
  Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)
Collecting itsdangerous>=0.21 (from Flask==0.10.1->-r /usr/src/app/requirements.txt (line 1))
  Downloading itsdangerous-0.24.tar.gz (46kB)
Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->Flask==0.10.1->-r /usr/src/app/requirements.txt (line 1))
  Downloading MarkupSafe-1.0.tar.gz
Installing collected packages: Werkzeug, MarkupSafe, Jinja2, itsdangerous, Flask
  Running setup.py install for MarkupSafe: started
    Running setup.py install for MarkupSafe: finished with status 'done'
  Running setup.py install for itsdangerous: started
    Running setup.py install for itsdangerous: finished with status 'done'
  Running setup.py install for Flask: started
    Running setup.py install for Flask: finished with status 'done'
Successfully installed Flask-0.10.1 Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 itsdangerous-0.24
You are using pip version 9.0.0, however version 9.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
 ---> 16d47a8073fd
Removing intermediate container fb6b7b8beb3c
Step 5/8 : COPY app.py /usr/src/app/
 ---> 338019e5711f
Step 6/8 : COPY templates/index.html /usr/src/app/templates/
 ---> b65ed769c446
Step 7/8 : EXPOSE 5000
 ---> Running in b95001d36e4d
 ---> 0deaa29ca54a
Removing intermediate container b95001d36e4d
Step 8/8 : CMD python /usr/src/app/app.py
 ---> Running in 4a8e82f87e2f
 ---> 40a121fff878
Removing intermediate container 4a8e82f87e2f
Successfully built 40a121fff878
Successfully tagged upendradevisetty/myfirstapp:latest





If you don’t have the alpine:3.5 image, the client will first pull the image and then create your image. Therefore, your output on running the command will look different from mine. If everything went well, your image should be ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/myfirstapp shows.


	Run your image




When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command. Don’t forget to include the port forwarding options you learned about before.

$ docker run -d -p 8888:5000 --name myfirstapp $YOUR_DOCKERHUB_USERNAME/myfirstapp





Head over to http://localhost:8888 and your app should be live.

[image: catpic]

Hit the Refresh button in the web browser to see a few more cat images.






Exercise (5-10 mins): Deploy a custom Docker image


	Download the sample code from https://github.com/Azure-Samples/docker-django-webapp-linux.git


	Build the image using the Dockerfile in that repo using docker build command


	Run an instance from that image


	Verify the web app and container are functioning correctly


	Share your (non-localhost) url on Slack









5. Dockerfile commands summary

Here’s a quick summary of the few basic commands we used in our Dockerfile.


	FROM starts the Dockerfile. It is a requirement that the Dockerfile must start with the FROM command. Images are created in layers, which means you can use another image as the base image for your own. The FROM command defines your base layer. As arguments, it takes the name of the image. Optionally, you can add the Dockerhub username of the maintainer and image version, in the format username/imagename:version.


	RUN is used to build up the Image you’re creating. For each RUN command, Docker will run the command then create a new layer of the image. This way you can roll back your image to previous states easily. The syntax for a RUN instruction is to place the full text of the shell command after the RUN (e.g., RUN mkdir /user/local/foo). This will automatically run in a /bin/sh shell. You can define a different shell like this: RUN /bin/bash -c ‘mkdir /user/local/foo’


	COPY copies local files into the container.


	CMD defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new layer for the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you need to run multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you tell it where to run the command, unlike RUN. So example CMD commands would be:




CMD ["python", "./app.py"]

CMD ["/bin/bash", "echo", "Hello World"]






	EXPOSE creates a hint for users of an image which ports provide services. It is included in the information which can be retrieved via $ docker inspect <container-id>.





Note

The EXPOSE command does not actually make any ports accessible to the host! Instead, this requires publishing ports by means of the -p flag when using docker run.




	PUSH pushes your image to Docker Cloud, or alternately to a private registry





Note

If you want to learn more about Dockerfiles, check out Best practices for writing Dockerfiles [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/].






6. Demo’s


6.1 Portainer

Portainer [https://portainer.io/] is an open-source lightweight managment UI which allows you to easily manage your Docker hosts or Swarm cluster.


	Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are just one Docker command away from running Portainer anywhere.


	Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest versions of Docker, Docker Swarm and Swarm mode.





6.1.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you by now. We will talk about first line of command in the Advanced Docker session.

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer






	If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where portainer is running using username admin and password tryportainer


	If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000. For my case this is http://128.196.142.26:9000





Note

The -v /var/run/docker.sock:/var/run/docker.sock option can be used in mac/linux environments only.



[image: portainer_demo]






6.2 Play-with-docker (PWD)

PWD [http://www.play-with-docker.com/] is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers and even create clusters in Docker Swarm Mode [https://docs.docker.com/engine/swarm/]. Under the hood, Docker-in-Docker (DinD) is used to give the effect of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com [http://training.play-with-docker.com/].


6.2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ and start using PWD


Note

You can use your Dockerhub credentials to log-in to PWD



[image: pwd]











          

      

      

    

  

    
      
          
            
  
Advanced Docker

Now that we are relatively comfortable with Docker basics, lets look at some of the advanced Docker topics such as porting the Docker image to repositories (public and private), managing data in containers and finally deploy containers into cloud and other infrastructures etc.,


1. Docker registries

To demonstrate the portability of what we just created, let’s upload our built Docker image and run it somewhere else (Atmosphere cloud). After all, you’ll need to learn how to push to registries when you want to deploy containers to production.


Important

So what exactly is a registry?

A registry is a collection of repositories, and a repository is a collection of images—sort of like a GitHub repository, except the code is already built. An account on a registry can create many repositories. The docker CLI uses Docker’s public registry by default. You can even set up your own private registry using Docker Trusted Registry



There are several things you can do with Docker registries:


	Pushing images


	Finding images


	Pulling images


	Sharing images





1.1 Public repositories

Some example of public registries include Docker cloud [https://cloud.docker.com/], Docker hub [https://hub.docker.com/] and quay.io [https://quay.io/].


1.1.1 Log in with your Docker ID

Now that you’ve created and tested your image, you can push it to Docker cloud or Docker hub.


Note

If you don’t have a Docker account, sign up for one at Docker cloud [https://cloud.docker.com/] or Docker hub [https://hub.docker.com/]. Make note of your username. There are several advantages of registering to Dockerhub which we will see later on in the session



First you have to login to your Docker hub account. To do that:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID, head over to https://hub.docker.com to create one.
Username (upendradevisetty):
Password:





Enter Username and Password when prompted.




1.1.2 Tag the image

The notation for associating a local image with a repository on a registry is username/repository:tag. The tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in the get-started repository and tag it as part2.


Note

By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not recommended for reproducibility purposes.



Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so that the image will upload to your desired destination. For our docker image since we already have our Dockerhub username we will just add tag which in this case is 1.0

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0








1.1.3 Publish the image

Upload your tagged image to the Dockerhub repository

$ docker push $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0





Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new image there, with its pull command.

[image: docker_image]

Congrats! You just made your first Docker image and shared it with the world!




1.1.4 Pull and run the image from the remote repository

Let’s try to run the image from the remote repository on Cloud server by logging into CyVerse Atmosphere, launching an instance

First install Docker on Atmosphere using from here https://docs.docker.com/install/linux/docker-ce/ubuntu or alternatively you can use ezd command which is a short-cut command for installing Docker on Atmosphere

$ ezd





Now run the following command to run the docker image from Dockerhub

$ sudo docker run -d -p 8888:5000 --name myfirstapp $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0






Note

You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will pull it from the repository.



Head over to http://<ipaddress>:8888 and your app should be live.






1.2 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization. For example, CyVerse has it own private registry which will be used to push the Docker images.


1.2.1 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

[image: private_registry]

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2





Run docker ps -l to check the recent container from this Docker image

$ docker ps -l
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                    NAMES
6e44a0459373        registry:2          "/entrypoint.sh /e..."   11 seconds ago      Up 10 seconds       0.0.0.0:5000->5000/tcp   registry








1.2.2 Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0 $REGISTRY/$(whoami)/myfirstapp:1.0








1.2.2 Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/myfirstapp:1.0
The push refers to a repository [localhost:5000/upendra_35/myfirstapp]
64436820c85c: Pushed
831cff83ec9e: Pushed
c3497b2669a8: Pushed
1c5b16094682: Pushed
c52044a91867: Pushed
60ab55d3379d: Pushed
1.0: digest: sha256:5095dea8b2cf308c5866ef646a0e84d494a00ff0e9b2c8e8313a176424a230ce size: 1572








1.2.3 Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container from it

$ docker run -d -P --name=myfirstapplocal $REGISTRY/$(whoami)/myfirstapp:1.0












2. Automated Docker image building from github

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository. By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a repository containing a Dockerfile.

Automated Builds have several advantages:


	Images built in this way are built exactly as specified.


	The Dockerfile is available to anyone with access to your Docker Hub repository.


	Your repository is kept up-to-date with code changes automatically.


	Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.





2.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub [https://hub.docker.com] and on the hosted repository provider (GitHub [https://github.com/] or Bitbucket [https://bitbucket.org/]). While Dockerhub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free


Note


	If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings > Linked Accounts & Services.


	Building Windows containers is not supported.









2.2 Link your Docker Hub account to GitHub


	Log into Docker Hub.


	Navigate to Profile > Settings > Linked Accounts & Services [https://hub.docker.com/account/authorized-services/].


	Click the Link GitHub.
The system prompts you to choose between Public and Private and Limited Access. The Public and Private connection type is required if you want to use the Automated Builds.


	Press Select under Public and Private connection type.
If you are not logged into GitHub, the system prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your code repository, the system returns you to Docker Hub and the link is complete.




After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For example, github linked hosted repository looks like this:

[image: auto_build-1]




2.3 Create a new automated build

Automated build repositories rely on the integration with your github code repository to build.

Let’s create an automatic build for our flask-app using the instructions below:


	Initialize git repository for the flask-app directory




$ git init
Initialized empty Git repository in /Users/upendra_35/Documents/git.repos/flask-app/.git/

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

        Dockerfile
        app.py
        requirements.txt
        templates/

nothing added to commit but untracked files present (use "git add" to track)

$ git add * && git commit -m"Add files and folders"
[master (root-commit) cfdf021] Add files and folders
 4 files changed, 75 insertions(+)
 create mode 100644 Dockerfile
 create mode 100644 app.py
 create mode 100644 requirements.txt
 create mode 100644 templates/index.html






	Create a new repository on github by navigating to this url - https://github.com/new




[image: create_repo]


	Push the repository to github




[image: create_repo2]

$ git remote add origin https://github.com/upendrak/flask-app.git

$ git push -u origin master
Counting objects: 7, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.44 KiB | 0 bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To https://github.com/upendrak/flask-app.git
 * [new branch]      master -> master
Branch master set up to track remote branch master from origin.






	Select Create > Create Automated Build from Docker Hub.





	The system prompts you with a list of User/Organizations and code repositories.


	For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.


	Pick the project to build. In this case flask-app. Type in “Conainer Camp flask-app” in the Short Description box.


	If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project, the system displays the Create Automated Build dialog.




[image: auto_build-2]


Note

The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it with the branch name.




	Customize the automated build by pressing the Click here to customize behavior link.




[image: auto_build-2.1]

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the right of the page.


	Enter the master (default) for the name of the branch.


	Leave the Dockerfile location as is.


	Recall the file is in the root of your code repository.


	Specify 1.0 for the Tag Name.





	Click Create.





Important

During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dockerfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md file in your repository, it is used in the repository as the full description. If you change the full description after a build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your Git repository.




Warning

You can only trigger one build at a time and no more than one every five minutes. If you already have a build pending, or if you recently submitted a build request, Docker ignores new requests.



It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the detail page for your Automated Build repository.


	Manually Trigger a Build




Before you trigger an automated build by pushing to your GitHub flask-app repo, you’ll trigger a manual build. Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

[image: auto_build-5]

Press Trigger button and finally click Save Changes.


Note

Docker builds everything listed whenever a push is made to the code repository. If you specify a particular branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax (regex) to define your build branch or tag, Docker does not give you the option to manually build.



[image: auto_build-6]


	Review the build results




The Build Details page shows a log of your build systems:

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

[image: auto_build-7]




Exercise 1 (5-10 mins): Updating and automated building


	Add some more cat pics to the app.py file


	Add, Commit and Push it to your github repo


	Trigger automatic build with a new tag (2.0) on Dockerhub


	Run an instance to make sure the new pics show up


	Share your Dockerhub link url on Slack









3. Managing data in Docker

It is possible to store data within the writable layer of a container, but there are some limitations:


	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.


	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.




Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or tmpfs volumes. When in doubt, volumes are almost always the right choice.


3.1 Volumes

Volumes are created and managed by Docker. You can create a volume explicitly using the docker volume create command, or Docker can create a volume during container creation. When you create a volume, it is stored within a directory on the Docker host (/var/lib/docker/ on Linux and check for the location on mac in here https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/). When you mount the volume into a container, this directory is what is mounted into the container. A given volume can be mounted into multiple containers simultaneously. When no running container is using a volume, the volume is still available to Docker and is not removed automatically. You can remove unused volumes using docker volume prune command.

[image: volumes]

Volumes are often a better choice than persisting data in a container’s writable layer, because using a volume does not increase the size of containers using it, and the volume’s contents exist outside the lifecycle of a given container. While bind mounts (which we will see later) are dependent on the directory structure of the host machine, volumes are completely managed by Docker. Volumes have several advantages over bind mounts:


	Volumes are easier to back up or migrate than bind mounts.


	You can manage volumes using Docker CLI commands or the Docker API.


	Volumes work on both Linux and Windows containers.


	Volumes can be more safely shared among multiple containers.


	A new volume’s contents can be pre-populated by a container.





Note

If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing the data anywhere permanently, and to increase the container’s performance by avoiding writing into the container’s writable layer.




3.1.1 Choose the -v or –mount flag for mounting volumes

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was used for swarm services. However, starting with Docker 17.06, you can also use --mount with standalone containers. In general, --mount is more explicit and verbose. The biggest difference is that the -v syntax combines all the options together in one field, while the --mount syntax separates them. Here is a comparison of the syntax for each flag.


Tip

New users should use the --mount syntax. Experienced users may be more familiar with the -v or --volume syntax, but are encouraged to use --mount, because research has shown it to be easier to use.



-v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the correct order, and the meaning of each field is not immediately obvious.
- In the case of named volumes, the first field is the name of the volume, and is unique on a given host machine.
- The second field is the path where the file or directory are mounted in the container.
- The third field is optional, and is a comma-separated list of options, such as ro.

--mount: Consists of multiple key-value pairs, separated by commas and each consisting of a <key>=<value> tuple. The --mount syntax is more verbose than -v or --volume, but the order of the keys is not significant, and the value of the flag is easier to understand.
- The type of the mount, which can be bind, volume, or tmpfs.
- The source of the mount. For named volumes, this is the name of the volume. For anonymous volumes, this field is omitted. May be specified as source or src.
- The destination takes as its value the path where the file or directory is mounted in the container. May be specified as destination, dst, or target.
- The readonly option, if present, causes the bind mount to be mounted into the container as read-only.


Note

The --mount and -v examples have the same end result.






3.1.2. Create and manage volumes

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

Let’s create a volume

$ docker volume create my-vol





List volumes:

$ docker volume ls

local               my-vol





Inspect a volume by looking at the Mount section in the docker volume inspect

$ docker volume inspect my-vol
[
    {
        "Driver": "local",
        "Labels": {},
        "Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
        "Name": "my-vol",
        "Options": {},
        "Scope": "local"
    }
]





Remove a volume

$ docker volume rm my-vol








3.1.3 Populate a volume using a container

This example starts an nginx container and populates the new volume nginx-vol with the contents of the container’s /var/log/nginx directory, which is where Nginx stores its log files.

$ docker run -d -p 8891:80 --name=nginxtest --mount source=nginx-vol,target=/var/log/nginx nginx:latest





So, we now have a copy of Nginx running inside a Docker container on our machine, and our host machine’s port 5000 maps directly to that copy of Nginx’s port 80. Let’s use curl to do a quick test request:

$ curl localhost:8891
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>





You’ll get a screenful of HTML back from Nginx showing that Nginx is up and running. But more interestingly, if you look in the nginx-vol volume on the host machine and take a look at the access.log file you’ll see a log message from Nginx showing our request.

cat nginx-vol/_data/access.log





Use docker inspect nginx-vol to verify that the volume was created and mounted correctly. Look for the Mounts section:

"Mounts": [
            {
                "Type": "volume",
                "Name": "nginx-vol",
                "Source": "/var/lib/docker/volumes/nginx-vol/_data",
                "Destination": "/var/log/nginx",
                "Driver": "local",
                "Mode": "z",
                "RW": true,
                "Propagation": ""
            }
        ],





This shows that the mount is a volume, it shows the correct source and destination, and that the mount is read-write.

After running either of these examples, run the following commands to clean up the containers and volumes.

$ docker stop nginxtest

$ docker rm nginxtest

$ docker volume rm nginx-vol










3.2 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.


Tip

If you are developing new Docker applications, consider using named volumes instead. You can’t use Docker CLI commands to directly manage bind mounts.



[image: bind_mount]


Warning

One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.




3.2.1 Start a container with a bind mount

$ mkdir data

$ docker run -d -p 8891:80 --name devtest --mount type=bind,source="$(pwd)"/data,target=/var/log/nginx nginx:latest





Use docker inspect devtest to verify that the bind mount was created correctly. Look for the “Mounts” section

This shows that the mount is a bind mount, it shows the correct source and target, it shows that the mount is read-write, and that the propagation is set to rprivate.

Stop the container:

$ docker rm -f devtest








3.2.2 Use a read-only bind mount

For some development applications, the container needs to write into the bind mount, so changes are propagated back to the Docker host. At other times, the container only needs read access.

This example modifies the one above but mounts the directory as a read-only bind mount, by adding ro to the (empty by default) list of options, after the mount point within the container. Where multiple options are present, separate them by commas.

$ docker run -d -p 8891:80 --name devtest --mount type=bind,source="$(pwd)"/data,target=/var/log/nginx,readonly nginx:latest





Use docker inspect devtest to verify that the bind mount was created correctly. Look for the Mounts section:

"Mounts": [
    {
        "Type": "bind",
        "Source": "/Users/upendra_35/Documents/git.repos/flask-app/data",
        "Destination": "/var/log/nginx",
        "Mode": "",
        "RW": false,
        "Propagation": "rprivate"
    }
],





Stop the container:

$ docker rm -f devtest





Remove the volume:

$ docker volume rm devtest










3.3 tmpfs

tmpfs mounts: A tmpfs mount is not persisted on disk, either on the Docker host or within a container. It can be used by a container during the lifetime of the container, to store non-persistent state or sensitive information. For instance, internally, swarm services use tmpfs mounts to mount secrets into a service’s containers.

[image: tmpfs]

Volumes and bind mounts are mounted into the container’s filesystem by default, and their contents are stored on the host machine. There may be cases where you do not want to store a container’s data on the host machine, but you also don’t want to write the data into the container’s writable layer, for performance or security reasons, or if the data relates to non-persistent application state. An example might be a temporary one-time password that the container’s application creates and uses as-needed. To give the container access to the data without writing it anywhere permanently, you can use a tmpfs mount, which is only stored in the host machine’s memory (or swap, if memory is low). When the container stops, the tmpfs mount is removed. If a container is committed, the tmpfs mount is not saved.

$ docker run -d -p 8891:80 --name devtest --mount type=tmpfs,target=/var/log/nginx nginx:latest





Use docker inspect devtest to verify that the bind mount was created correctly. Look for the Mounts section:

$ docker inspect devtest

"Mounts": [
            {
                "Type": "tmpfs",
                "Source": "",
                "Destination": "/var/log/nginx",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            }
        ],





You can see from the above output that the Source filed is empty which indicates that the contents are not avaible on Docker host or host file system.

Stop the container:

$ docker rm -f devtest





Remove the volume:

$ docker volume rm devtest










4. Docker Compose for multi container apps

Docker Compose is a tool for defining and running your multi-container Docker applications.

Main advantages of Docker compose include:


	Your applications can be defined in a YAML file where all the options that you used in docker run are now defined (Reproducibility).


	It allows you to manage your application as a single entity rather than dealing with individual containers (Simplicity).




Let’s now create a simple web app with Docker Compose using Flask (which you already seen before) and Redis. We will end up with a Flask container and a Redis container all on one host.


Note

The code for the above compose example is available here [https://github.com/upendrak/compose_flask]




	You’ll need a directory for your project on your host machine:




$ mkdir compose_flask && cd compose_flask






	Add the following to requirements.txt inside compose_flask directory:




flask
redis






	Copy and paste the following code into a new file called app.py inside compose_flask directory:




from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():
    redis.incr('hits')
    return 'This Compose/Flask demo has been viewed %s time(s).' % redis.get('hits')

if __name__ == "__main__":
    app.run(host="0.0.0.0", debug=True)






	Create a Dockerfile with the following code inside compose_flask directory:




FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD python app.py






	Add the following code to a new file, docker-compose.yml, in your project directory:




version: '2'
services:
    web:
        restart: always
        build: .
        ports:
            - "8888:5000"
        volumes:
            - .:/code
        depends_on:
            - redis
    redis:
        restart: always
        image: redis





A brief explanation of docker-compose.yml is as below:


	restart: always means that it will restart whenever it fails.


	We define two services, web and redis.


	The web service builds from the Dockerfile in the current directory.


	Forwards the container’s exposed port (5000) to port 8888 on the host.


	Mounts the project directory on the host to /code inside the container (allowing you to modify the code without having to rebuild the image).


	depends_on links the web service to the Redis service.


	The redis service uses the latest Redis image from Docker Hub.





Note

Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users do not need to install Compose separately.
Docker for Windows and Docker Toolbox already include Compose along with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.19.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose








	Build and Run with docker-compose up -d command




$ docker-compose up -d

Building web
Step 1/5 : FROM python:2.7
2.7: Pulling from library/python
f49cf87b52c1: Already exists
7b491c575b06: Already exists
b313b08bab3b: Already exists
51d6678c3f0e: Already exists
09f35bd58db2: Already exists
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
Digest: sha256:8cb593cb9cd1834429f0b4953a25617a8457e2c79b3e111c0f70bffd21acc467
Status: Downloaded newer image for python:2.7
 ---> 9e92c8430ba0
Step 2/5 : ADD . /code
 ---> 746bcecfc3c9
Step 3/5 : WORKDIR /code
 ---> c4cf3d6cb147
Removing intermediate container 84d850371a36
Step 4/5 : RUN pip install -r requirements.txt
 ---> Running in d74c2e1cfbf7
Collecting flask (from -r requirements.txt (line 1))
  Downloading Flask-0.12.2-py2.py3-none-any.whl (83kB)
Collecting redis (from -r requirements.txt (line 2))
  Downloading redis-2.10.6-py2.py3-none-any.whl (64kB)
Collecting itsdangerous>=0.21 (from flask->-r requirements.txt (line 1))
  Downloading itsdangerous-0.24.tar.gz (46kB)
Collecting Jinja2>=2.4 (from flask->-r requirements.txt (line 1))
  Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)
Collecting Werkzeug>=0.7 (from flask->-r requirements.txt (line 1))
  Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)
Collecting click>=2.0 (from flask->-r requirements.txt (line 1))
  Downloading click-6.7-py2.py3-none-any.whl (71kB)
Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask->-r requirements.txt (line 1))
  Downloading MarkupSafe-1.0.tar.gz
Building wheels for collected packages: itsdangerous, MarkupSafe
  Running setup.py bdist_wheel for itsdangerous: started
  Running setup.py bdist_wheel for itsdangerous: finished with status 'done'
  Stored in directory: /root/.cache/pip/wheels/fc/a8/66/24d655233c757e178d45dea2de22a04c6d92766abfb741129a
  Running setup.py bdist_wheel for MarkupSafe: started
  Running setup.py bdist_wheel for MarkupSafe: finished with status 'done'
  Stored in directory: /root/.cache/pip/wheels/88/a7/30/e39a54a87bcbe25308fa3ca64e8ddc75d9b3e5afa21ee32d57
Successfully built itsdangerous MarkupSafe
Installing collected packages: itsdangerous, MarkupSafe, Jinja2, Werkzeug, click, flask, redis
Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7 flask-0.12.2 itsdangerous-0.24 redis-2.10.6
 ---> 5cc574ff32ed
Removing intermediate container d74c2e1cfbf7
Step 5/5 : CMD python app.py
 ---> Running in 3ddb7040e8be
 ---> e911b8e8979f
Removing intermediate container 3ddb7040e8be
Successfully built e911b8e8979f
Successfully tagged composeflask_web:latest





And that’s it! You should be able to see the Flask application running on http://localhost:8888 or <ipaddress>:8888

[image: docker-compose]


Exercise 2 (10 mins)


	Change the greeting in app.py and save it. For example, change the This Compose/Flask demo has been viewed message to This Container Camp Workshop demo has been viewed


	Refresh the app in your browser. What do you see now?


	Create a automatic build for compose-flask project directory


	Share your Dockerhub link url on Slack









5. Improving your data science workflow using Docker containers (Containerized Data Science)

For a data scientist, running a container that is already equipped with the libraries and tools needed for a particular analysis eliminates the need to spend hours debugging packages across different environments or configuring custom environments.

But why Set Up a Data Science Environment in a Container?


	One reason is speed. We want data scientists using our platform to launch a Jupyter or RStudio session in minutes, not hours. We also want them to have that fast user experience while still working in a governed, central architecture (rather than on their local machines).


	Containerization benefits both data science and IT/technical operations teams. In the DataScience.com Platform, for instance, we allow IT to configure environments with different languages, libraries, and settings in an admin dashboard and make those images available in the dropdown menu when a data scientist launches a session. These environments can be selected for any run, session, scheduled job, or API. (Or you don’t have to configure anything at all. We provide plenty of standard environment templates to choose from.)


	Ultimately, containers solve a lot of common problems associated with doing data science work at the enterprise level. They take the pressure off of IT to produce custom environments for every analysis, standardize how data scientists work, and ensure that old code doesn’t stop running because of environment changes. To start using containers and our library of curated images to do collaborative data science work, request a demo of our platform today.


	Configuring a data science environment can be a pain. Dealing with inconsistent package versions, having to dive through obscure error messages, and having to wait hours for packages to compile can be frustrating. This makes it hard to get started with data science in the first place, and is a completely arbitrary barrier to entry.




Thanks to the rich ecosystem, there are already several readily available images for the common components in data science pipelines. Here are some Docker images to help you quickly spin up your own data science pipeline:


	MySQL [https://hub.docker.com/_/mysql/]


	Postgres [https://hub.docker.com/_/postgres/]


	Redmine [https://hub.docker.com/_/redmine/]


	MongoDB [https://hub.docker.com/_/mongo/]


	Hadoop [https://hub.docker.com/r/sequenceiq/hadoop-docker/]


	Spark [https://hub.docker.com/r/sequenceiq/spark/]


	Zookeeper [https://hub.docker.com/r/wurstmeister/zookeeper/]


	Kafka [https://github.com/spotify/docker-kafka]


	Cassandra [https://hub.docker.com/_/cassandra/]


	Storm [https://github.com/wurstmeister/storm-docker]


	Flink [https://github.com/apache/flink/tree/master/flink-contrib/docker-flink]


	R [https://github.com/rocker-org/rocker]




Motivation: Say you want to play around with some cool data science libraries in Python or R but what you don’t want to do is spend hours on installing Python or R, working out what libraries you need, installing each and every one and then messing around with the tedium of getting things to work just right on your version of Linux/Windows/OSX/OS9 — well this is where Docker comes to the rescue! With Docker we can get a Jupyter ‘Data Science’ notebook stack up and running in no time at all. Let’s get started! We will see few examples of thse in the following sections…


Note

The above code can be found in this github [https://github.com/upendrak/jupyternotebook_docker]




	Launch a Jupyter notebook conatiner




Docker allows us to run a ‘ready to go’ Jupyter data science stack in what’s known as a container:

1.1 Create a docker-compose.yml file

$ mkdir jn && cd jn





version: '2'

services:
  datascience-notebook:
    image: jupyter/datascience-notebook
    volumes:
      - .:/data
    ports:
      - 8888:8888
    container_name:   datascience-notebook-container






Note

The jupyter/datascience-notebook image can be found on dockerhub



[image: jn_ss]

1.2 Run container using docker-compose file

$ docker-compose up
Creating datascience-notebook-container ...
Creating datascience-notebook-container ... done
Attaching to datascience-notebook-container
datascience-notebook-container | Execute the command: jupyter notebook
datascience-notebook-container | [I 08:44:31.312 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
datascience-notebook-container | [W 08:44:31.332 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not       recommended.
datascience-notebook-container | [I 08:44:31.370 NotebookApp] JupyterLab alpha preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
datascience-notebook-container | JupyterLab v0.27.0
datascience-notebook-container | Known labextensions:
datascience-notebook-container | [I 08:44:31.373 NotebookApp] Running the core application with no additional extensions or settings
datascience-notebook-container | [I 08:44:31.379 NotebookApp] Serving notebooks from local directory: /home/jovyan
datascience-notebook-container | [I 08:44:31.379 NotebookApp] 0 active kernels
datascience-notebook-container | [I 08:44:31.379 NotebookApp] The Jupyter Notebook is running at: http://[all ip addresses on your      system]:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478
datascience-notebook-container | [I 08:44:31.379 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
datascience-notebook-container | [C 08:44:31.380 NotebookApp]
datascience-notebook-container |
datascience-notebook-container |     Copy/paste this URL into your browser when you connect for the first time,
datascience-notebook-container |     to login with a token:
datascience-notebook-container |         http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478





The last line is a URL that we need to copy and paste into our browser to access our new Jupyter stack:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478






Warning

Do not copy and paste the above URL in your browser as this URL is specific to my environment.



Once you’ve done that you should be greeted by your very own containerised Jupyter service!

[image: jn_login]

To create your first notebook, drill into the work directory and then click on the ‘New’ button on the right hand side and choose ‘Python 3’ to create a new Python 3 based Notebook.

[image: jn_login2]

Now you can write your python code. Here is an example

[image: jn_login3]

[image: jn_login3.5]

To shut down the container once you’re done working, simply hit Ctrl-C in the terminal/command prompt. Your work will all be saved on your actual machine in the path we set in our Docker compose file. And there you have it — a quick and easy way to start using Jupyter notebooks with the magic of Docker.


	Launch a R-Studio container




Next, we will see a Docker image from Rocker which will allow us to run RStudio inside the container and has many useful R packages already installed.

[image: rstudio_ss]

$ docker run --rm -d -p 8787:8787 rocker/rstudio:3.4.3






Note

–rm ensures that when we quit the container, the container is deleted. If we did not do this, everytime we run a container, a version of it will be saved to our local computer. This can lead to the eventual wastage of a lot of disk space until we manually remove these containers.



The command above will lead RStudio-Server to launch invisibly. To connect to it, open a browser and enter http://localhost:8787, or <ipaddress>:8787 on cloud

[image: rstudio_login2]

Enter rstudio as username and password. Finally Rstudio shows up and you can run your R command from here

[image: rstudio_login]


	Machine learning using Docker




In this simple example we’ll take a sample dataset of fruits metrics (like size, weight, texture) labelled apples and oranges. Then we can predict the fruit given a new set of fruit metrics using scikit-learn’s decision tree

You can find the above code in this github repo [https://github.com/upendrak/scikit_tree_docker]


	Create a directory that consists of all the files




$ mkdir scikit_docker && cd scikit_docker






	Create requirements.txt file — Contains python modules and has nothing to do with Docker inside the folder - scikit_docker.




numpy
scipy
scikit-learn






	Create a file called app.py inside the folder — scikit_docker




from sklearn import tree
#DataSet
#[size,weight,texture]
X = [[181, 80, 44], [177, 70, 43], [160, 60, 38], [154, 54, 37],[166, 65, 40], [190, 90, 47], [175, 64, 39], [177, 70, 40], [159, 55, 37], [171, 75, 42], [181, 85, 43]]

Y = ['apple', 'apple', 'orange', 'orange', 'apple', 'apple', 'orange', 'orange', 'orange', 'apple', 'apple']

#classifier - DecisionTreeClassifier
clf_tree = tree.DecisionTreeClassifier();
clf_tree = clf_tree.fit(X,Y);

#test_data
test_data = [[190,70,42],[172,64,39],[182,80,42]];

#prediction
prediction_tree = clf_tree.predict(test_data);

# Write output to a file
with open("output.txt", 'w') as fh_out:
        fh_out.write("Prediction of DecisionTreeClassifier:")
        fh_out.write(str(prediction_tree))






	Create a Dockerfile that contains all the instructions for building a Docker image inside the project directory




# Use an official Python runtime as a parent image
FROM python:3.6-slim
MAINTAINER Upendra Devisetty <upendra@cyverse.org>
LABEL Description "This Dockerfile is used to build a scikit-learn’s decision tree image"

# Set the working directory to /app
WORKDIR /app

# Copy the current directory contents into the container at /app
ADD . /app

# Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

# Define environment variable
ENV NAME World

# Run app.py when the container launches
CMD ["python", "app.py"]






	Create a Docker compose YAML file




version: '2'
services:
    datasci:
        build: .
        volumes:
            - .:/app






	Now Build and Run the Docker image using docker-compose up command to predict the fruit given a new set of fruit metrics




$ docker-compose up
Building datasci
Step 1/8 : FROM python:3.6-slim
 ---> dc41c0491c65
Step 2/8 : MAINTAINER Upendra Devisetty <upendra@cyverse.org>
 ---> Running in 95a4da823100
 ---> 7c4d5b78bb0a
Removing intermediate container 95a4da823100
Step 3/8 : LABEL Description "This Dockerfile is used to build a scikit-learn’s decision tree image"
 ---> Running in e8000ae57a7d
 ---> d872e29971e3
Removing intermediate container e8000ae57a7d
Step 4/8 : WORKDIR /app
 ---> 083eb3e4fb16
Removing intermediate container c965871286f9
Step 5/8 : ADD . /app
 ---> 82b1dbdbe759
Step 6/8 : RUN pip install -r requirements.txt
 ---> Running in 3c82f7d5dd95
Collecting numpy (from -r requirements.txt (line 1))
  Downloading numpy-1.14.0-cp36-cp36m-manylinux1_x86_64.whl (17.2MB)
Collecting scipy (from -r requirements.txt (line 2))
  Downloading scipy-1.0.0-cp36-cp36m-manylinux1_x86_64.whl (50.0MB)
Collecting scikit-learn (from -r requirements.txt (line 3))
  Downloading scikit_learn-0.19.1-cp36-cp36m-manylinux1_x86_64.whl (12.4MB)
Installing collected packages: numpy, scipy, scikit-learn
Successfully installed numpy-1.14.0 scikit-learn-0.19.1 scipy-1.0.0
 ---> 3d402c23203f
Removing intermediate container 3c82f7d5dd95
Step 7/8 : ENV NAME World
 ---> Running in d0468b521e81
 ---> 9cd31e8e7c95
Removing intermediate container d0468b521e81
Step 8/8 : CMD python app.py
 ---> Running in 051bd2235697
 ---> 36bb4c3d9183
Removing intermediate container 051bd2235697
Successfully built 36bb4c3d9183
Successfully tagged scikitdocker_datasci:latest
WARNING: Image for service datasci was built because it did not already exist. To rebuild this image you must use `docker-compose build` or `docker-compose up --build`.
Creating scikitdocker_datasci_1 ...
Creating scikitdocker_datasci_1 ... done
Attaching to scikitdocker_datasci_1
scikitdocker_datasci_1 exited with code 0





Use docker-compose rm to remove the container after docker-compose finish running

docker-compose rm
Going to remove scikitdocker_datasci_1
Are you sure? [yN] y
Removing scikitdocker_datasci_1 ... done





You will find the ouput file in the scikit_docker folder with the following contents

$ cat output.txt
Prediction of DecisionTreeClassifier:['apple' 'orange' 'apple']











          

      

      

    

  

    
      
          
            
  
Introduction to Singularity

[image: singularity]


1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text editor. Prior experience developing web applications could be helpful but is not required.


Note


Important: Docker and Singularity are friends [http://singularity.lbl.gov/docs-docker] but they have distinct differences.




Singularity Related Resources [https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/en/latest/useful_resources/usefulresources_singularity.html]


Docker:


	Inside a Docker container the user has escalated privileges, effectively making them root on the host system. This is not supported by most administrators of High Performance Computing (HPC) centers.




Singularity:


	Work on HPC


	Same user inside and outside the container


	User only has root privileges if elevated with sudo


	Run (and modify!) existing Docker containers









Singularity uses a ‘flow’ whereby you can (1) create and modify images on your dev system, (2) build containers using recipes or pulling from repositories, and (3) execute containers on production systems.

[image: singularityflow]




2. Singularity Installation

Singularity homepage: https://www.sylabs.io/docs/

While Singularity is more likely to be used on a remote system, e.g. HPC or cloud, you may want to develop your own containers first on a local machine or dev system.


Exercise 1 (15-20 mins)




2.1 Setting up your Laptop

To Install Singularity on your laptop or desktop PC follow the instructions from Singularity: (Mac [http://singularity.lbl.gov/install-mac], Windows [https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-windows], Linux [https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-linux])



	running a VM is required on Mac OS X, Singularityware VagrantBox [https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-mac]










2.2 HPC

Load the Singularity module on a HPC

If you are interested in working on HPC, you may need to contact your systems administrator and request they install Singularity [https://www.sylabs.io/guides/2.6/user-guide/installation.html#requesting-an-installation].

Most HPC systems are running Environment Modules with the simple command module. You can check to see what is available:

$ module avail





If Singularity is installed:

$ module load singularity








2.3 XSEDE Jetstream / CyVerse Atmosphere Clouds

CyVerse staff have deployed an Ansible playbooks called ez installation which includes Singularity [https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/#] that only requires you to type a short line of code.

Start a featured instance on Atmosphere or Jetstream.

Type in the following:

$ ezs

* Updating ez singularity and installing singularity (this may take a few minutes, coffee break!)
Cloning into '/opt/cyverse-ez-singularity'...
remote: Counting objects: 11, done.
remote: Total 11 (delta 0), reused 0 (delta 0), pack-reused 11
Unpacking objects: 100% (11/11), done.
Checking connectivity... done.








2.4 Check Installation

Singularity should now be installed on your laptop or VM, or loaded on the HPC, you can check the installation with:

$ singularity pull shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /tmp/vsoch-hello-world-master.simg

$ singularity run vsoch-hello-world-master.simg
RaawwWWWWWRRRR!!





View the Singularity help:

$ singularity --help

USAGE: singularity [global options...] <command> [command options...] ...

GLOBAL OPTIONS:
    -d|--debug    Print debugging information
    -h|--help     Display usage summary
    -s|--silent   Only print errors
    -q|--quiet    Suppress all normal output
       --version  Show application version
    -v|--verbose  Increase verbosity +1
    -x|--sh-debug Print shell wrapper debugging information

GENERAL COMMANDS:
    help       Show additional help for a command or container
    selftest   Run some self tests for singularity install

CONTAINER USAGE COMMANDS:
    exec       Execute a command within container
    run        Launch a runscript within container
    shell      Run a Bourne shell within container
    test       Launch a testscript within container

CONTAINER MANAGEMENT COMMANDS:
    apps       List available apps within a container
    bootstrap  *Deprecated* use build instead
    build      Build a new Singularity container
    check      Perform container lint checks
    inspect    Display container's metadata
    mount      Mount a Singularity container image
    pull       Pull a Singularity/Docker container to $PWD

COMMAND GROUPS:
    image      Container image command group
    instance   Persistent instance command group


CONTAINER USAGE OPTIONS:
    see singularity help <command>

For any additional help or support visit the Singularity
website: http://singularity.lbl.gov/










3. Downloading Singularity containers

The easiest way to use a Singularity container is to pull an existing container from one of the Container Registries maintained by the Singularity group.


Exercise 2 (~10 mins)




3.1: Pulling a Container from Singularity Hub

You can use the pull command to download pre-built images from a number of Container Registries, here we’ll be focusing on the Singularity-Hub [https://www.singularity-hub.org] or DockerHub [https://hub.docker.com/].

Container Registries:


	shub - images hosted on Singularity Hub


	docker - images hosted on Docker Hub


	localimage - images saved on your machine


	yum - yum based systems such as CentOS and Scientific Linux


	debootstrap - apt based systems such as Debian and Ubuntu


	arch - Arch Linux


	busybox - BusyBox


	zypper - zypper based systems such as Suse and OpenSuse




In this example I am pulling a base Ubuntu container from Singularity-Hub:

$ singularity pull shub://singularityhub/ubuntu





You can rename the container using the –name flag:

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu





After your image has finished downloading it should be in the present working directory, unless you specified to download it somewhere else.

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu
Progress |===================================| 100.0%
Done. Container is at: /home/***/ubuntu_test.simg
$ singularity run ubuntu_test.simg
This is what happens when you run the container...
$ singularity shell ubuntu_test.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_test.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04 LTS"
NAME="Ubuntu"
VERSION="14.04, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
Singularity ubuntu_test.simg:~>








Exercise 2.2: Pulling container from Docker Hub

This example pulls a container from DockerHub

Build to your container by pulling an image from Docker:

$ singularity pull docker://ubuntu:16.04
WARNING: pull for Docker Hub is not guaranteed to produce the
WARNING: same image on repeated pull. Use Singularity Registry
WARNING: (shub://) to pull exactly equivalent images.
Docker image path: index.docker.io/library/ubuntu:16.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%
Importing: base Singularity environment
Importing: /home/.../.singularity/docker/sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /home/.../.singularity/docker/sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /home/.../.singularity/docker/sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/.../.singularity/docker/sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/.../.singularity/docker/sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/.../.singularity/metadata/sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu-16.04.simg
Cleaning up...
Done. Container is at: ./ubuntu-16.04.simg





Note, there are some Warning messages concerning the build from Docker.

The example below does the same as above, but renames the image.

$ singularity pull --name ubuntu_docker.simg docker://ubuntu
Importing: /home/***/.singularity/docker/sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/***/.singularity/docker/sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/***/.singularity/docker/sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/***/.singularity/metadata/sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu_docker.simg
Cleaning up...
Done. Container is at: ./ubuntu_docker.simg





When we run this particular Docker container without any runtime arguments, it does not return any notifications, and the Bash prompt does not change the prompt.

$ singularity run ubuntu_docker.simg
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"
NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial





Whoa, we’re inside a container!?!

This is the OS on the VM I tested this on:

$ exit
exit
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS"
NAME="Ubuntu"
VERSION="16.04.1 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.1 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial





Here we are back in the container:

$ singularity shell ubuntu_docker.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_docker.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"
NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial
Singularity ubuntu_docker.simg:~>





When invoking a container, make sure it executes and exits, or notifies you it is running.

Keeping track of downloaded images may be necessary if space is a concern.

By default, Singularity uses a temporary cache to hold Docker tarballs:

$ ls ~/.singularity





You can change these by specifying the location of the cache and temporary directory on your localhost:

$ sudo mkdir tmp
$ sudo mkdir scratch

$ SINGULARITY_TMPDIR=$PWD/scratch SINGULARITY_CACHEDIR=$PWD/tmp singularity --debug pull --name ubuntu-tmpdir.simg docker://ubuntu





As an example, using Singularity we can run a UI program that was built from Docker, here I show the IDE RStudio tidyverse from Rocker [https://hub.docker.com/r/rocker/rstudio/]

$ singularity exec docker://rocker/tidyverse:latest R





“An Introduction to Rocker: Docker Containers for R by Carl Boettiger, Dirk Eddelbuettel” [https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf]






4. Building Singularity containers locally

Like Docker which uses a dockerfile to build its containers, Singularity uses a file called Singularity

When you are building locally, you can name this file whatever you wish, but a better practice is to put it in a directory and name it Singularity - as this will help later on when developing on Singularity-Hub and Github.

Create Container and add content to it:

$ singularity image.create ubuntu14.simg
Creating empty 768MiB image file: ubuntu14.simg
Formatting image with ext3 file system
Image is done: ubuntu14.simg

$ singularity build ubuntu14.simg docker://ubuntu:14.04
Building into existing container: ubuntu14.simg
Docker image path: index.docker.io/library/ubuntu:14.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%
Importing: base Singularity environment
Importing: /home/.../.singularity/docker/sha256:c954d15f947c57e059f67a156ff2e4c36f4f3e59b37467ff865214a88ebc54d6.tar.gz
Importing: /home/.../.singularity/docker/sha256:c3688624ef2b94ab3981564e23e1f48df8f1b988519373ccfb79d7974017cb85.tar.gz
Importing: /home/.../.singularity/docker/sha256:848fe4263b3b44987f0eacdb2fc0469ae6ff04b2311e759985dfd27ae5d3641d.tar.gz
Importing: /home/.../.singularity/docker/sha256:23b4459d3b04aa0bc7cb7f7021e4d7bbb5e87aa74a6a5f57475a0e8badbd9a26.tar.gz
Importing: /home/.../.singularity/docker/sha256:36ab3b56c8f1a3188464886cbe41f42a969e6f9374e040f13803d796ed27b0ec.tar.gz
Importing: /home/.../.singularity/metadata/sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ubuntu14.simg
Cleaning up...





Note, image.create uses an ext3 file system

Create a container using a custom Singularity file:

$ singularity build --name ubuntu.simg Singularity





In the above command:


	–name will create a container named  ubuntu.simg




Pull a Container from Docker and make it writable using the –writable flag:

$ sudo singularity build --writable ubuntu.simg  docker://ubuntu

Docker image path: index.docker.io/library/ubuntu:latest
Cache folder set to /root/.singularity/docker
Importing: base Singularity environment
Importing: /root/.singularity/docker/sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /root/.singularity/docker/sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /root/.singularity/docker/sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /root/.singularity/docker/sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /root/.singularity/docker/sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /root/.singularity/metadata/sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
Creating empty Singularity writable container 120MB
Creating empty 150MiB image file: ubuntu.simg
Formatting image with ext3 file system
Image is done: ubuntu.simg
Building Singularity image...
Singularity container built: ubuntu.simg
Cleaning up...

$ singularity shell ubuntu.simg

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Reading package lists... Done
W: chmod 0700 of directory /var/lib/apt/lists/partial failed - SetupAPTPartialDirectory (1: Operation not permitted)
E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)
E: Unable to lock directory /var/lib/apt/lists/
Singularity ubuntu.simg:~> exit
exit

$ sudo singularity shell ubuntu.simg

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Hit:1 http://archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Get:3 http://archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Get:4 http://archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]
Get:5 http://security.ubuntu.com/ubuntu xenial-security/universe Sources [73.2 kB]
Get:6 http://archive.ubuntu.com/ubuntu xenial/universe Sources [9802 kB]
Get:7 http://security.ubuntu.com/ubuntu xenial-security/main amd64 Packages [585 kB]
Get:8 http://security.ubuntu.com/ubuntu xenial-security/universe amd64 Packages [405 kB]
Get:9 http://security.ubuntu.com/ubuntu xenial-security/multiverse amd64 Packages [3486 B]
Get:10 http://archive.ubuntu.com/ubuntu xenial/universe amd64 Packages [9827 kB]
Get:11 http://archive.ubuntu.com/ubuntu xenial/multiverse amd64 Packages [176 kB]
Get:12 http://archive.ubuntu.com/ubuntu xenial-updates/universe Sources [241 kB]
Get:13 http://archive.ubuntu.com/ubuntu xenial-updates/main amd64 Packages [953 kB]
Get:14 http://archive.ubuntu.com/ubuntu xenial-updates/restricted amd64 Packages [13.1 kB]
Get:15 http://archive.ubuntu.com/ubuntu xenial-updates/universe amd64 Packages [762 kB]
Get:16 http://archive.ubuntu.com/ubuntu xenial-updates/multiverse amd64 Packages [18.5 kB]
Get:17 http://archive.ubuntu.com/ubuntu xenial-backports/main amd64 Packages [5153 B]
Get:18 http://archive.ubuntu.com/ubuntu xenial-backports/universe amd64 Packages [7168 B]
Fetched 23.2 MB in 4s (5569 kB/s)
Reading package lists... Done

Singularity ubuntu.simg:~> apt-get install curl --fix-missing





When I try to install software to the image without sudo it is denied, because root is the owner of the container. When I use sudo I can install software to the container. The software remain in the container after closing the container and restart.


Note

Bootstrapping bootstrap command is deprecated (v2.4), use build instead.

To install a container with Ubuntu from the ubuntu.com reposutiry you need to use debootstrap




Exercise 3: Creating the Singularity file (30 minutes)

Recipes [http://singularity.lbl.gov/docs-recipes] can use any number of container registries for bootstrapping a container.

(Advanced) the Singularity file can be hosted on Github and will be auto-detected by Singularity-Hub when you set up your Container Collection.

Building your own containers requires that you have sudo privileges - therefore you’ll need to develop these on your local machine or on a VM that you can gain root access on.


	The Header




The top of the file, selects the base OS for the container. Bootstrap: references the repository (e.g. docker, debootstrap, sub). From: selects the name of the owner/container.

Bootstrap: shub
From: vsoch/hello-world





Using debootstrap with a build that uses a mirror:

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/





Using a localimage to build:

Bootstrap: localimage
From: /path/to/container/file/or/directory





Using CentOS-like container:

Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-7/7/os/x86_64/
Include:yum





Note: to use yum to build a container you should be operating on a RHEL system, or an Ubuntu system with yum installed.

The container registries which Singularity uses are listed above in Section 3.1.


	Sections




The Singularity file uses sections to specify the dependencies, environmental settings, and runscripts when it build.


	%help - create text for a help menu associated with your container


	%setup - executed on the host system outside of the container, after the base OS has been installed.


	%files - copy files from your host system into the container


	%labels - store metadata in the container


	%environment - loads environment variables at the time the container is run (not built)


	%post - set environment variables during the build


	%runscript - executes a script when the container runs


	%test - runs a test on the build of the container





	Apps




In Singularity 2.4+ we can build a container which does multiple things, e.g. each app has its own runscripts. These use the prefix %app before the sections mentioned above. The %app architecture can exist in addition to the regular %post and %runscript sections.

Bootstrap: docker
From: ubuntu

% environment

%labels

##############################
# foo
##############################

%apprun foo
    exec echo "RUNNING FOO"

%applabels foo
    BESTAPP=FOO
    export BESTAPP

%appinstall foo
    touch foo.exec

%appenv foo
    SOFTWARE=foo
    export SOFTWARE

%apphelp foo
    This is the help for foo.

%appfiles foo
    avocados.txt


##############################
# bar
##############################

%apphelp bar
    This is the help for bar.

%applabels bar
    BESTAPP=BAR
    export BESTAPP

%appinstall bar
    touch bar.exec

%appenv bar
    SOFTWARE=bar
    export SOFTWARE






	Setting up Singularity file system




%help section can be as verbose as you want

Bootstrap: docker
From: ubuntu

%help
This is the container help section.





%setup commands are executed on the localhost system outside of the container - these files could include necessary build dependencies. We can copy files to the $SINGULARITY_ROOTFS file system can be done during %setup

%files include any files that you want to copy from your localhost into the container.

%post includes all of the environment variables and dependencies that you want to see installed into the container at build time.

%environment includes the environment variables which we want to be run when we start the container

%runscript does what it says, it executes a set of commands when the container is run.

Example Singularity file bootstrapping a Docker [https://hub.docker.com/_/ubuntu/] Ubuntu (16.04) image.

BootStrap: docker
From: ubuntu:16.04

%post
    apt-get -y update
    apt-get -y install fortune cowsay lolcat

%environment
    export LC_ALL=C
    export PATH=/usr/games:$PATH

%runscript
    fortune | cowsay | lolcat

%labels
    Maintainer Tyson Swetnam
    Version v0.1





Build the container:

singularity build --name cowsay_container.simg Singularity





Run the container:

singularity run cowsay.simg





If you build a squashfs container, it is immutable (you cannot –writable edit it)






5. Running Singularity Containers

Commands:

exec - command allows you to execute a custom command within a container by specifying the image file.

shell - command allows you to spawn a new shell within your container and interact with it.

run - assumes your container is set up with “runscripts” triggered with the run command, or simply by calling the container as though it were an executable.

inspect - inspects the container.

–writable - creates a writable container that you can edit interactively and save on exit.

–sandbox - copies the guts of the container into a directory structure.


5.1 Using the exec command

$ singularity exec shub://singularityhub/ubuntu cat /etc/os-release








5.2 Using the shell command

$ singularity shell shub://singularityhub/ubuntu








5.3 Using the run command

$ singularity run shub://singularityhub/ubuntu








5.4 Using the inspect command

You can inspect the build of your container using the inspect command

$ singularity pull  shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /home/***/vsoch-hello-world-master-latest.simg

$ singularity inspect vsoch-hello-world-master-latest.simg
{
    "org.label-schema.usage.singularity.deffile.bootstrap": "docker",
    "MAINTAINER": "vanessasaur",
    "org.label-schema.usage.singularity.deffile": "Singularity",
    "org.label-schema.schema-version": "1.0",
    "WHATAMI": "dinosaur",
    "org.label-schema.usage.singularity.deffile.from": "ubuntu:14.04",
    "org.label-schema.build-date": "2017-10-15T12:52:56+00:00",
    "org.label-schema.usage.singularity.version": "2.4-feature-squashbuild-secbuild.g780c84d",
    "org.label-schema.build-size": "333MB"
}








5.5 Using the –sandbox and –writable commands

As of Singularity v2.4 by default build produces immutable images in the ‘squashfs’ file format. This ensures reproducible and verifiable images.

Creating a –writable image must use the sudo command, thus the owner of the container is root

$ sudo singularity build --writable ubuntu-master.simg shub://singularityhub/ubuntu
Cache folder set to /root/.singularity/shub
Progress |===================================| 100.0%
Building from local image: /root/.singularity/shub/singularityhub-ubuntu-master-latest.simg
Creating empty Singularity writable container 208MB
Creating empty 260MiB image file: ubuntu-master.simg
Formatting image with ext3 file system
Image is done: ubuntu-master.simg
Building Singularity image...
Singularity container built: ubuntu-master.simg
Cleaning up...





You can convert these images to writable versions using the –writable and –sandbox commands.

When you use the –sandbox the container is written into a directory structure. Sandbox folders can be created without the sudo command.

$ singularity build --sandbox lolcow/ shub://GodloveD/lolcow
WARNING: Building sandbox as non-root may result in wrong file permissions
Cache folder set to /home/.../.singularity/shub
Progress |===================================| 100.0%
Building from local image: /home/.../.singularity/shub/GodloveD-lolcow-master-latest.simg
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Singularity container built: lolcow/
Cleaning up...
@vm142-73:~$ cd lolcow/
@vm142-73:~/lolcow$ ls
bin  boot  dev  environment  etc  home  lib  lib64  media  mnt  opt  proc  run  sbin  singularity  srv  sys  tmp  usr  var








5.6 Test

Singularity can test the build of your container.

You can bypass the test by using –no-test.




5.7 Bind Paths

When Singularity creates the new file system inside a container it ignores directories that are not part of the standard kernel, e.g. /scratch, /xdisk, /global, etc. These paths can be added back into the container by binding them when the container is run.

$ singularity shell --bind /xdisk ubuntu14.simg





The system administrator can also define what is added to a container. This is important on campus HPC systems that often have a /scratch or /xdisk directory structure. By editing the /etc/singularity/singularity.conf a new path can be added to the system containers.




5.8 Overlay

You can make changes to an immutable container which only persist for the duration of the container being run.

First, download a container.

Next, create a new image in the ext3 format.

$ singularity image.create blank_slate.simg





Now, overlay your blank image file name with the container you just downloaded.

$ sudo singularity shell --overlay blank_slate.simg ubuntu14.simg





note: using the `sudo` command to make the container writable









          

      

      

    

  

    
      
          
            
  
Advanced Singularity

[image: singularity]


1. Using HPC Environments

Conducting analyses on high performance computing clusters happens through very different patterns of interaction than running analyses on a VM.  When you login, you are on a node that is shared with lots of people.  Trying to run jobs on that node is not “high performance” at all.  Those login nodes are just intended to be used for moving files, editing files, and launching jobs.

Most jobs on an HPC cluster are neither interactive, nor realtime.  When you submit a job to the scheduler, you must tell it what resources you need (e.g. how many nodes, what type of nodes) and what you want to run.  Then the scheduler finds resources matching your requirements, and runs the job for you when it can.

For example, if you want to run the command:

singularity exec docker://python:latest /usr/local/bin/python





On an HPC system, your job submission script would look something like:

#!/bin/bash
#
#SBATCH -J myjob                      # Job name
#SBATCH -o output.%j                  # Name of stdout output file (%j expands to jobId)
#SBATCH -p development                # Queue name
#SBATCH -N 1                          # Total number of nodes requested (68 cores/node)
#SBATCH -n 17                         # Total number of mpi tasks requested
#SBATCH -t 02:00:00                   # Run time (hh:mm:ss) - 4 hours

module load tacc-singularity
singularity exec docker://python:latest /usr/local/bin/python





This example is for the Slurm scheduler, a popular one used by all TACC systems.  Each of the #SBATCH lines looks like a comment to the bash kernel, but the scheduler reads all those lines to know what resources to reserve for you.

It is usually possible to get an interactive session as well.  At TACC, the command “idev” is used to get an interactive development session.  For example:

idev -m 240 -p skx-normal





Just running “idev” gives you one hour on a development node.  The example above will give you a 240 minute interactive session on the “skx-normal” partition of the system (which in this case have 48 Skylake CPU cores per node).


Note

Every HPC cluster is a little different, but they almost universally have a “User’s Guide” that serves both as a quick reference for helpful commands and contains guidelines for how to be a “good citizen” while using the system.  For TACC’s Stampede2 system, the user guide is at: https://portal.tacc.utexas.edu/user-guides/stampede2




How do HPC systems fit into the development workflow?

A few things to consider when using HPC systems:


	Using ‘sudo’ is not allowed on HPC systems, and building a Singularity container from scratch requires sudo.  That means you have to build your containers on a different development system.  You can pull a docker image on HPC systems


	If you need to edit text files, command line text editors don’t support using a mouse, so working efficiently has a learning curve.  There are text editors that support editing files over SSH.  This lets you use a local text editor and just save the changes to the HPC system.


	Singularity is in the process of changing image formats.  Depending on the version of Singularity running on the HPC system, new squashFS or .simg formats may not work.









2. Singularity and MPI

Singularity supports MPI fairly well.  Since (by default) the network is the same insde and outside the container, the communication between containers usually just works.  The more complicated bit is making sure that the container has the right set of MPI libraries.  MPI is an open specification, but there are several implementations (OpenMPI, MVAPICH2, and Intel MPI to name three) with some non-overlapping feature sets.  If the host and container are running different MPI implementations, or even different versions of the same implementation, hilarity may ensue.

The general rule is that you want the version of MPI inside the container to be the same version or newer than the host.  You may be thinking that this is not good for the portability of your container, and you are right.  Containerizing MPI applications is not terribly difficult with Singularity, but it comes at the cost of additional requirements for the host system.


Note

Many HPC Systems, like Stampede2, have highspeed, low latency networks that have special drivers.  Infiniband, Ares, and OmniPath are three different specs for these types of networks.  When running MPI jobs, if the container doesn’t have the right libraries, it won’t be able to use those special interconnects to communicate between nodes.



Because you may have to build your own MPI enabled Singularity images (to get the versions to match), here is a 2.3 compatible example of what it may look like:

# Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.
#
# "Singularity" Copyright (c) 2016, The Regents of the University of     California,
# through Lawrence Berkeley National Laboratory (subject to receipt of any
# required approvals from the U.S. Dept. of Energy).  All rights reserved.

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/


%runscript
    echo "This is what happens when you run the container..."


%post
    echo "Hello from inside the container"
    sed -i 's/$/ universe/' /etc/apt/sources.list
    apt update
    apt -y --allow-unauthenticated install vim build-essential wget     gfortran bison libibverbs-dev libibmad-dev libibumad-dev librdmacm-dev     libmlx5-dev libmlx4-dev
    wget http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/    mvapich2-2.1.tar.gz
    tar xvf mvapich2-2.1.tar.gz
    cd mvapich2-2.1
    ./configure --prefix=/usr/local
    make -j4
    make install
    /usr/local/bin/mpicc examples/hellow.c -o /usr/bin/hellow





You could also build in everything in a Dockerfile and convert the image to Singularity at the end.

Once you have a working MPI container, invoking it would look something like:

mpirun -np 4 singularity exec ./mycontainer.img /app.py arg1 arg2





This will use the host MPI libraries to run in parallel, and assuming the image has what it needs, can work across many nodes.

For a single node, you can also use the container MPI to run in parallel (usually you don’t want this)

singularity exec ./mycontainer.img mpirun -np 4 /app.py arg1 arg2








3. Singularity and GPU Computing

GPU support in Singularity is fantastic

Since Singularity supported docker containers, it has been fairly simple to utilize GPUs for machine learning code like TensorFlow. From Maverick, which is TACC’s GPU system:

# Work from a compute node
idev -m 60
# Load the singularity module
module load tacc-singularity
# Pull your image
singularity pull docker://nvidia/caffe:latest

singularity exec --nv caffe-latest.img caffe device_query -gpu 0





Please note that the –nv flag specifically passes the GPU drivers into the container. If you leave it out, the GPU will not be detected.

singularity exec caffe-latest.img caffe device_query -gpu 0





For TensorFlow, you can directly pull their latest GPU image and utilize it as follows.

# Change to your $WORK directory
cd $WORK
#Get the software
git clone https://github.com/tensorflow/models.git ~/models
# Pull the image
singularity pull docker://tensorflow/tensorflow:latest-gpu
# Run the code
singularity exec --nv tensorflow-latest-gpu.img python $HOME/models/tutorials/image/mnist/convolutional.py






Note

You probably noticed that we check out the models repository into your $HOME directory. This is because your $HOME and $WORK directories are only available inside the container if the root folders /home and /work exist inside the container. In the case of tensorflow-latest-gpu.img, the /work directory does not exist, so any files there are inaccessible to the container.



You may be thinking “what about overlayFS??”. Stampede2 supports it, but the Linux kernel on the other systems does not support overlayFS, so it had to be disabled in our Singularity install.  This may change as new Singularity versions are released.


Hands-On Exercise

Build a Singularity container that implements a simple Tensorflow image classifier.

The image classifier script is available “out of the box” here:
https://raw.githubusercontent.com/tensorflow/models/master/tutorials/image/imagenet/classify_image.py

Tensorflow has working Docker containers on DockerHub that you can use to support all the dependencies.  For example, the first line of your Dockerfile might look like:

FROM tensorflow/tensorflow:1.5.0-py3





When running the image classifier, the non-containerized version would be invoked with something like:

python /classify_image.py --model_dir /model --image_file cat.png





You can use a Singularity file or a Dockerfile to help you.  For reference, you can lookback at the “Singularity Intro” section on building Singularity images, yesterday’s material on building Dockerfiles, or the respective manual pages:


	http://singularity.lbl.gov/docs-build-container


	https://docs.docker.com/engine/reference/builder/












          

      

      

    

  

    
      
          
            
  
Deploying apps in Discovery Environment

The CyVerse Discovery Environment (DE) provides a simple yet powerful web portal for managing data, analyses, and workflows. The DE uses containers (via Docker and Singularity through Agave) to support customizable, non-interactive, reproducible workflows using data stored in the CyVerse Data Store, based on iRODS. Agave is a “Science-as-a-Service” API platform for high-performance computing (HPC), high-throughput computing (HTC) and big-data resources.


Deploying Docker images as apps in DE

Instruction guide: This paper will guide you to bring your dockerized tools into CyVerse DE.

https://f1000research.com/articles/5-1442/v3

[image: f1000]


Note

Significant changes have been made as to how you can bring your tools into DE and so we are working on a separate paper that will show all those changes. Meanwhile you can follow the below tutorial for integrating your tools.



Here are the basic steps for deploying Docker images as apps in DE. For this tutorial I am going to show an example of Tensor image classifier docker image that I dockerized and pushed to dockerhub.


	Build and test your Docker images


	Push your Docker image to public repositories


	Add Docker images as tool in DE


	Create a UI for the tool in DE


	Test the app using appropriate test data





Warning

If you already have your own Docker image or Docker image of interest is hosted on public repositories (Dockerhub or quay.io or some other public repository), then you can skip to step 3



1. Build and test your Docker images

The first step is to dockerize your tool or software of interest. Detailed steps of how to dockerize your tool and test your dockerized images can be found in sections intro to docker and advanced docker.

For this tutorial I will use the tensorflow image classifier docker image that I built using this code [https://github.com/upendrak/tensorflow_image_classifier]

Testing

docker run -v $(pwd):/data -w /data tensorflow_up:1.0 sample_data/16401288243_36112bd52f_m.jpg





2. Push your Docker image to public repositories

Once the Docker image works then you can push those images to some public repository such as dockerhub [http://hub.docker.com] or quay.io [http://quay.io]

Here is the docker image for the tensorflow image classifier on docker hub - https://hub.docker.com/r/upendradevisetty/tensorflow_image_classifier/

3. Add Docker images as tool in DE

All tools now run installed as Docker images in the DE. Once the software is dockerized and available as Docker images on dockerhub then you can add those docker images as a tool in DE.


Warning

Check if the tool and correct version are already installed in the DE by following the below steps.


	Log in to the Discovery Environment by going to https://de.cyverse.org/de/, entering your CyVerse username and password, and clicking LOGIN. If you have not already done so, you will need to sign up for a CyVerse account.


	Click the Apps window to open the Apps window.


	Click the Manage Tools button on the top-right of the Apps window.


	In the search tools field, enter the first few letters of the tool name and then click enter.


	If the tool is available then you can skip to skip to step 3 for creating a UI for that tool.






If the tool is not available in DE then do the following:


	Click open the Tools tab in Manage Tools window and then click Add tools button


	Then enter the fields about your tool and then click “Ok”.



	Tool Name: It should be the name of the tool. For example “tensorflow_image_classifier”.


	Description: A short Description about the tool. For example “Tensorflow image classifier”.


	Version: What is the version number of the tool. For example “1.0”.


	Image name: Name of the Docker image on dockerhub or quay.io. For example “upendradevisetty/tensorflow_image_classifier”.


	Tag: What is the tag of your Docker image. This is optional but is highly recommended. If non specified, it will pull the default tag latest. If the latest tag is not avaiable the tool integration will fail. For example “1.0”


	Entrypoint: Do you want a entrypoint for your Docker image? This optional.


	Docker Hub URL: URL of the Dockerhub docker image. Option but is recommended. In this example “”.











[image: img_building_1]


	If there is no error, it indicates successful integration of the tool.




4. Create a UI for the tool in DE

Once the Dockerized tool is added, you can create the app UI for the tool. The Create App window consists of four distinct sections:


	The first section contains the different app items that can be added to your interface. To add an app item, select the one to use (hover over the object name for a brief description) and drag it into position in the middle section.


	The second section is the landing place for the objects you dragged and dropped from the left section, and it updates to display how the app will look when presented to a user.


	The third section (Details) displays all of the available properties for the selected item. As you customize the app in this section, the middle section updates dynamically so you can see how it will look and act.


	Finally, the fourth section at the bottom (Command line view) contains the command-line commands for the current item’s properties. As you update the properties in the Details section, the command-line view updates as well to let you make sure that you are passing the correct arguments in the correct order.




[image: img_building_4]


Note

Creating a new app interface requires that you know how to use the tool. With that knowledge, you create the interface according to how you want options to be displayed to a user.



Here is an example of the Tensorflow image classifier - 1.0 app UI in DE

[image: img_building_3]

5. Test the app using appropriate test data

After creating the new app according to your design, test your app in the your Apps under development folder in the DE using appropriate test data to make sure it works properly.

For testing, we’ll use the the same image that we have used earlier.

[image: img_building_9]


	First open the Tensorflow image classifier - 1.0 app in the app window




[image: img_building_5]


	Next browse the test file in the app and click launch analysis




[image: img_building_6]


	After the analysis is completed, open the folder and check to see if the image classifier correctly predicts




[image: img_building_8]

Congrats!!! It works. The image classifier correctly predicts that image is a daisy..


	If your app works the way you expect it to you can share your app or make the app public


	If your app doesn’t work, then you may need to make changes to the app UI or you need to make changes to your Docker image. If you make changes to the Docker image, then you don’t need to create a new app UI again as the Docker image updates will be propagated automatically.










          

      

      

    

  

    
      
          
            
  
OSG (Open Science Grid) Singularity Infrastructure


1. Prerequisites

ssh will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors will supply a slip of paper with username, password and hostname during the session.




2. OSG Overview

The Open Science Grid (OSG) [https://www.opensciencegrid.org/] is a distributed infrastructure for high throughput computing. The OSG enables dozens of universities and labs to provide researchers with access to significant computing resources. The resources accessible through the OSG are contributed by the community, organized by the OSG, and governed by the OSG consortium. In the last 12 months, we have provided more than 1.2 Billion CPU hours to researchers across a wide variety of projects.

[image: osg_map]

This map is available “live” on the OSG Display [https://display.grid.iu.edu/] site.


2.1 Distributed High Throughput Computing

OSG is focusing on single core, or low number core jobs which can fit on a single node. Some guidelines:


	Use less than 2 GB memory


	Each invocation should run for 1-12 hours


	Compute sites in the OSG can be configured to use preemption, which means jobs can be automatically killed if higher priority jobs enter the system. Preempted jobs will restart on another site, but it is important that the jobs can handle multiple restarts.







2.2 Motivations for Containers in OSG

Each computing resource exposes a slightly different operating system environment. Actually this capacity can be daunting for the individual: each site has its own discretion to setup their runtime environment in a unique way.


Note

Before containers, OSG used to tell the users:


	Binaries should preferably be statically linked. However, dynamically linked binaries with standard library dependencies, built for a 64-bit Red Hat Enterprise Linux (RHEL) 6 machines will also work. Also, interpreted languages such as Python or Perl will work as long as there are no special module requirements.


	Software dependencies can be difficult to accommodate unless the software can be staged with the job.






Motivation for containers in OSG:


	Consistent environment (default images) - If a user does not specify a specific image, a default one is used by the job. The image contains a decent base line of software, and because the same image is used across all the sites, the user sees a more consistent environment than if the job landed in the environments provided by the individual sites.


	Custom software environment (user defined images) - Users can create and use their custom images, which is useful when having very specific software requirements or software stacks which can be tricky to bring with a job. For example: Python or R modules with dependencies, TensorFlow, …


	Enables special environment such as GPUs - Special software environments to go and in hand with the special hardware.


	Process isolation - Sandboxes the job environment so that a job can not peek at other jobs.


	File isolation - Sandboxes the job file system, so that a job can not peek at other jobs’ data.







2.3 Container Statistics

These are for a subset of OSG, specifically for the OSG VO (Virtual Organization). Other VOs are also using containers.

[image: osg_container_count]

One challenge when running these many container per day, across 100’s of sites and 1000’s of compute nodes, is how do we distribute and access containers without putting unnecessary load on Docker and Singularity hubs? More about this below.

The breakdown of jobs shows about half runs without containers, and the once running in containers are mostly doing so under the default images.

[image: osg_container_breakdown]






3. CVMFS

The CernVM File System (CVMFS) is a highly-scalable global filesystem optimized for global distribution of software.  The CERN-based LHC experiments invested in this filesystem based on the experience of attempting to synchronize the install their complex application software stacks across hundreds of sites.  Each release may contain tens of gigabytes of data across hundreds of thousands of files; a few dozen to a hundred releases might be active at any given time.

CVMFS is FUSE-based - a filesystem implemented in user space, not within the Linux kernel.  It scales well because changes to each repository are only written to a single repository node and then distributed throughout the CVMFS content distribution network (a hierarchical set of web servers and HTTP caches).  All writes are aggregated into a single transaction, making the rate of change relatively slow (typically, updates occur no faster than once every 15 minutes).  Since file contents are immutable, CVMFS is able to use a content-addressed scheme and the corresponding HTTP objects immutable.  Thus, the entire system is amenable to cache hierarchies.

CVMFS’s original use case has significant parallels with distributing scientific containers: containers tend to be read-only, contain relatively large sets of software, and need to be accessed - without modification or corruption - at multiple sites.

[image: osg_cvmfs]

OSG stores container images on CVMFS in extracted form. That is, we take the Docker image layers or the Singularity img/simg files and export them onto CVMFS. For example, ls on one of the containers looks similar to ls / on any Linux machine:

$ ls /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el7:latest/
cvmfs  host-libs  proc  sys  anaconda-post.log     lib64
dev    media      root  tmp  bin                   sbin
etc    mnt        run   usr  image-build-info.txt  singularity
home   opt        srv   var  lib





This is a very efficient way for use to distribute the images. Most jobs only need small parts of the actual image (as low as 25-100 MBs), and the CVMFS caching mechanism means those bits are aggressivly cached at both the site and node level.


3.1 cvmfs-singularity-sync

Information on how to register your image can be found on the Docker and Singularity Containers [https://display.grid.iu.edu/] page in the OSG Help Desk. It says:

In order to be able to efficiently distribute the container images to a large of distributed compute hosts, OSG has chosen to host the images under CVMFS. Any image publicly available in Docker can be included for automatic syncing into the CVMFS repository. The result is an unpacked image under /cvmfs/singularity.opensciencegrid.org/

To get your images included, please either create a git pull request against docker_images.txt in the cvmfs-singularity-sync [https://github.com/opensciencegrid/cvmfs-singularity-sync] repository, or contact user-support@opensciencegrid.org and we can help you.

Once your image has been registered, new versions pushed to Docker Hub will automatically be detected and CVMFS will be updated accordingly.






4. Exercise 1: Exploring Available Images

Log in via ssh to the training account provided on the slip of paper. workflow.isi.edu is a submit host for both Open Science Grid as well as a local HTCondor pool.

Look at at the directories and sub directories under /cvmfs/singularity.opensciencegrid.org

$ ls /cvmfs/singularity.opensciencegrid.org/





Note how the directories in here relate to the docker_images.txt in the cvmfs-singularity-sync repository (link [https://github.com/opensciencegrid/cvmfs-singularity-sync/blob/master/docker_images.txt]).

Let’s explore an image which is different from the host operating system (CentOS 7). A good example of this is the TensorFlow image which is based on Ubuntu 16.04. Start an interactive shell and explore the environment, including verifying that TensorFlow is available and what version it is:

$ singularity shell /cvmfs/singularity.opensciencegrid.org/opensciencegrid/tensorflow:latest/
Singularity: Invoking an interactive shell within container...

$ cat /etc/issue
Ubuntu 16.04.3 LTS

$ python3 -c 'import tensorflow as tf; print(tf.__version__)'
1.4.0

$ exit





Make sure you run exit as the remaining exercises will be run under the host operating system.




5. Exercise 2: Containerized Job - Default Image


Note

These exercises will continue to use the workflow.isi.edu submit host. If you want to use OSG for your research in the future, please sign up for an account on OSG Connect [http://osgconnect.net/] and then use the OSG Connect submit hosts.

More information on how to run jobs on OSG can be found in the OSG Connect Quick Start Guide [https://support.opensciencegrid.org/solution/articles/5000633410-osg-connect-quickstart]



You will find an example HTCondor job under ~/ContainerCamp/OSG-02-Default-Image/. Look at the content of test-1.submit

$ cd ~/ContainerCamp/OSG-02-Default-Image/
$ cat test-1.submit





The submit file specifies that we want Singularity, but not which image:

Requirements = HAS_SINGULARITY == True





Submit a job with:

$ condor_submit test-1.submit





Check on the job with condor_q or condor_q -nobatch:

$ condor_q
$ connor_q -nobatch





Once the job is complete, examine the created job.*.output file:

$ cat job.920697.0.output
Hello! I'm running on the site MWT2 on the node uct2-c235.mwt2.org
My Singularity image is /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el6:latest





Open Science Grid has multiple default images! Currently, we have one for RHEL 6 and one for RHEL 7. The dynamic pool of resources contains a mix of these defaults. Most of the OSG users only cares about the base OS, and not whether it is a Singularity instance or not. A common requirments line is Requirements = OSGVO_OS_STRING == “RHEL 6” && Arch == “X86_64” &&  HAS_MODULES == True which maps to RHEL 6 (Singularity or native), on 64 bit host and which as a modules software. For fun, we can steer our jobs to a Singularity RHEL 7 instance. Let’s take a look at test-2.submit requirments:

Requirements = HAS_SINGULARITY == True && OSGVO_OS_STRING == "RHEL 7"





Submit the job and examine the output just like for the first job:

$ condor_submit test-2.submit








6. Exercise 3: Containerized Job - Custom Image

To run a job with a custom image, the +SingularityImage is used in the submit file to specify what image should be used. Change your working directory into ~/ContainerCamp/OSG-03-Custom-Image and look at the test-1.submit file

$ cd ~/ContainerCamp/OSG-03-Custom-Image/
$ cat test-1.submit
...
Requirements = HAS_SINGULARITY == True
+SingularityImage = "/cvmfs/singularity.opensciencegrid.org/opensciencegrid/tensorflow:latest"
...





Using +SingularityImage, you can specify any image available under /cvmfs/singularity.opensciencegrid.org/. Just like we did above, you can run this job and see what the output shows.

OSG also has limited support for pulling images directly from Singularity Hub, Docker Hub, or over http. This is pass-through functionallity of what Singularity can do (see the Singularity Quickstart Guide [http://singularity.lbl.gov/quickstart]). This is a less efficient way to access the images, so only use this for small workloads. For larger workloads, please use the CVMFS approach. Also note that the APIs change, so pulling images directly from the hubs can be Singularity version sensitive. test-2.submit shows how we can specify that the job should use Singularity 2.4.2 and pull directly from the Singularity Hub. +SingularityBindCVMFS = False is required for images which do not have the /cvmfs directory and do not want to have CVMFS access.

$ cat test-2.submit
...
Requirements = HAS_SINGULARITY == True && OSG_SINGULARITY_VERSION == "2.4.2-dist"
+SingularityImage = "shub://singularityhub/ubuntu"
+SingularityBindCVMFS = False
...











          

      

      

    

  

    
      
          
            
  
Pegasus Workflows with Application Containers


Note

This section contains an overview of scientific workflows, Pegasus, and how containers fits into Pegasus workflows. We will not have time to thoroughly cover all aspects of Pegasus - for future reference please see the user guide [https://pegasus.isi.edu/documentation/] and self guided tutorial [https://pegasus.isi.edu/documentation/tutorial.php].




1. Prerequisites

ssh will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors will supply a slip of paper with username, password and hostname during the session.




2. What are Scientific Workflows?

Scientific workflows allow users to easily express multi-step computational tasks, for example retrieve data from an instrument or a database, reformat the data, and run an analysis. A scientific workflow describes the dependencies between the tasks and in most cases the workflow is described as a directed acyclic graph (DAG), where the nodes are tasks and the edges denote the task dependencies. A defining property for a scientific workflow is that it manages data flow. The tasks in a scientific workflow can be everything  from short serial tasks to very large parallel tasks (MPI for example) surrounded by a large number of small, serial tasks used for pre- and post-processing.

[image: pegasus_diamond]




2. Pegasus Workflow Management System

Pegasus WMS is a configurable system for mapping and executing abstract application workflows over a wide range of execution environments including a laptop, a campus cluster, a Grid, or a commercial or academic cloud. Today, Pegasus runs workflows on Amazon EC2, Google Compute Engine, Open Science Grid, XSEDE, and campus clusters. One workflow can run on a single system or across a heterogeneous set of resources.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level workflow descriptions onto distributed resources. It automatically locates the necessary input data and computational resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms without worrying about the details of the underlying execution environment or the particulars of the low-level specifications required by the middleware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description of the abstract workflow in XML format.

Pegasus has a number of features that contribute to its useability and effectiveness.


	Portability / Reuse. User created workflows can easily be run in different environments without alteration. Pegasus currently runs workflows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus, and many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.


	Performance. The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.


	Scalability. Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over. Pegasus runs workflows ranging from just a few computational tasks up to millions of tasks. The number of resources involved in executing a workflow can scale as needed without any impediments to performance.


	Provenance. By default, all jobs in Pegasus are launched via the kickstart process that captures runtime provenance of the job and helps in debugging. The provenance data is collected in a database, and the data can be summarised with tools such as pegasus-statistics, pegasus-plots, or directly with SQL queries.


	Data Management. Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to a workflow as auxilliary jobs by the Pegasus planner.


	Reliability. Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer helps the user to debug the workflow in case of non-recoverable failures.


	Error Recovery.  When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by providing workflow-level checkpointing, by re-mapping portions of the workflow, by trying alternative data sources for staging data, and, when all else fails, by providing a rescue workflow containing a description of only the work that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance) including the locations of data used and produced, and which software was used with which parameters.







3. Exercise 1: Without Containers

All of the example workflows described in the previous section can be generated with the pegasus-init command. For this tutorial we will be using the split workflow, which can be created like this:

$ pegasus-init split
Do you want to generate a tutorial workflow? (y/n) [n]: y
1: Local Machine
2: USC HPCC Cluster
3: OSG from ISI submit node
4: XSEDE, with Bosco
5: Bluewaters, with Glite
What environment is tutorial to be setup for? (1-5) [1]: 3
1: Process
2: Pipeline
3: Split
4: Merge
5: EPA (requires R)
What tutorial workflow do you want? (1-5) [1]: 3
Do you want to use Condor file transfers (y/n) [y]: y
Pegasus Tutorial setup for example workflow - split for execution on osg





The split workflow looks like this:

[image: pegasus_split_wf]

The input workflow description for Pegasus is called the DAX. It can be generated by running the generate_dax.sh script from the split directory, like this:

$ ./generate_dax.sh split.dax
Generated dax split.dax





This script will run a small Python program (daxgen.py) that generates a file with a .dax extension using the Pegasus Python API. Pegasus reads the DAX and generates an executable HTCondor workflow that is run on an execution site.

The pegasus-plan command is used to submit the workflow through Pegasus. The pegasus-plan command reads the input workflow (DAX file specified by –dax option), maps the abstract DAX to one or more execution sites, and submits the generated executable workflow to HTCondor. Among other things, the options to pegasus-plan tell Pegasus


	the workflow to run


	where (what site) to run the workflow


	the input directory where the inputs are placed


	the output directory where the outputs are placed




By default, the workflow is setup to run on the compute sites (i.e sites with handle other than “local”) defined in the sites.xml file. In our example, the workflow will run on a site named “condorpool” in the sites.xml file.

$ ./plan_dax.sh split.dax

-----------------------------------------------------------------------
File for submitting this DAG to HTCondor       : split-0.dag.condor.sub
Log of DAGMan debugging messages               : split-0.dag.dagman.out
Log of HTCondor library output                 : split-0.dag.lib.out
Log of HTCondor library error messages         : split-0.dag.lib.err
Log of the life of condor_dagman itself        : split-0.dag.dagman.log
-----------------------------------------------------------------------
Submitting to condor split-0.dag.condor.sub
Submitting job(s).
1 job(s) submitted to cluster 920589.

Your workflow has been started and is running in the base directory:

  /split/submit/pegtrain50/pegasus/split/run0001

*** To monitor the workflow you can run ***

  pegasus-status -l /split/submit/pegtrain50/pegasus/split/run0001

*** To remove your workflow run ***

  pegasus-remove /split/submit/pegtrain50/pegasus/split/run0001





This is what the split workflow looks like after Pegasus has finished planning the DAX:

[image: pegasus_split_dag]

You can monitor the workflow with the pegasus-status command provided in the output of the plan_dax.sh command:

pegasus-status -l /split/submit/pegtrain50/pegasus/split/run0001





More details on how to run basic workflow can be found in the Pegasus Tutorial [https://pegasus.isi.edu/documentation/tutorial.php]




4. Exercise 2: With Containers

Now when we have a basic understanding of what a Pegasus workflow looks like, let’s use containers to run some real science codes. This example is based on IPAC’s Montage [http://montage.ipac.caltech.edu/] toolkit, which is used to process and create astronomical image mosaics of from telescope images datasets. The workflow has a few software dependencies: Montage obviously, but also Python modules like AstroPy. These could be installed on the cluster you want to run the workflow on, but using containers makes it even easier!

Not only will we make the compute jobs run inside containers, but also the data find step needed to construct the workflow. IPAC provides services to list the images available for a given location in the sky (for example, see the documentation for mArchiveList [http://montage.ipac.caltech.edu/docs/mArchiveList.html]). For this querying we will use the same container as the jobs will be using. To get started, clone the Montage workflow from GitHub, and run the data find step:

$ cd ~
$ git clone https://github.com/pegasus-isi/montage-workflow-v2.git
$ cd montage-workflow-v2
$ singularity exec \
              --bind $PWD:/srv --pwd /srv \
              shub://pegasus-isi/montage-workflow-v2 \
              /srv/montage-workflow.py \
                  --tc-target container \
                  --center "275.196290 -16.171530" \
                  --degrees 0.2 \
                  --band 2mass:j:green \
                  --band 2mass:h:blue \
                  --band 2mass:k:red





The three different band arguments specify different bands that we want to find images for, and map to blue, green, and red in to the final image. The output of the command should show a few images found for each band:

Progress |===================================| 100.0%

Adding band 1 (2mass j -> green)
Running sub command: mArchiveList 2mass j "275.196290 -16.171530" 0.284 0.284 data/1-images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 1-images.tbl region-oversized.hdr 1-raw.tbl 1-projected.tbl 1-corrected.tbl
[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 1-raw.tbl 1-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]

Adding band 2 (2mass h -> blue)
Running sub command: mArchiveList 2mass h "275.196290 -16.171530" 0.284 0.284 data/2-images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 2-images.tbl region-oversized.hdr 2-raw.tbl 2-projected.tbl 2-corrected.tbl
[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 2-raw.tbl 2-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]

Adding band 3 (2mass k -> red)
Running sub command: mArchiveList 2mass k "275.196290 -16.171530" 0.284 0.284 data/3-images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 3-images.tbl region-oversized.hdr 3-raw.tbl 3-projected.tbl 3-corrected.tbl
[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 3-raw.tbl 3-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]





The data/ directory contains the imformation about the input images, the generated workflow (data/montage.dax) and the transformation catalog (data/tc.txt) which tells Pegasus where software is available. A job in the data/montage.dax file might look like:

<job id="ID0000001" name="mProject">
    <argument>-X <file name="2mass-atlas-990502s-j1420198.fits"/> <file name="p2mass-atlas-990502s-j1420198.fits"/> <file name="region-oversized.hdr"/></argument>
    <uses name="region-oversized.hdr" link="input"/>
    <uses name="2mass-atlas-990502s-j1420198.fits" link="input"/>
    <uses name="p2mass-atlas-990502s-j1420198.fits" link="output" transfer="false"/>
    <uses name="p2mass-atlas-990502s-j1420198_area.fits" link="output" transfer="false"/>
</job>





data/tc.txt has the specification on how mProject can be executed:

tr mProject {
  site condor_pool {
    type "INSTALLED"
    container "montage"
    pfn "file:///opt/Montage/bin/mProject"
    profile pegasus "clusters.size" "3"
  }
}





Note the container “montage” part - this is a reference to the top of the file which has:

cont montage {
   type "singularity"
   image "shub://pegasus-isi/montage-workflow-v2"
   profile env "MONTAGE_HOME" "/opt/Montage"
}





Which is the same container we used for the data find step. Note that container images is just like any other piece of data to Pegasus. In this case, the image will be downloaded once from the Singularity Hub, and then shipped around to the jobs with the same mechanism as any other data in the workflow.

There is currently a small issue by running the data find step inside a container - the paths for the files are based on paths in the container which are different from what Pegasus expects on the submit host. The following command adjusts those paths:

$ perl -p -i -e "s;/srv/data;$PWD/data;g" data/rc.txt





Now we are are ready to plan and submit the workflow:

$ pegasus-plan \
        --dir work \
        --relative-dir `date +'%s'` \
        --dax data/montage.dax \
        --sites condor_pool \
        --output-site local \
        --submit





The workflow will looks something like this:

[image: pegasus_montage_dax]

The first level reprojects the input images to a common projection. The images are then fitted together. A background correction is applied so that the the final image will be seamless. The last step is to take the 3 different color bands, and add them together into a final output image:

[image: pegasus_montage_result]

To see how Pegasus handled the container in this case, let’s look at some plumming for one of the mProject job. The HTCondor submit file can be seen with:

$ cat `find . -name mProject_ID0000002.sub`





Look at the transfer_input_files attribute line, and specifically for the montage.simg file. It is transferred together with all the other inputs for the job:

transfer_input_files = region-oversized.hdr,2mass-atlas-990502s-j1350092.fits,montage.simg,/opt/training/pegasus-4.8.2dev/share/pegasus/sh/pegasus-lite-common.sh,/scitech/home/pegtrain99/montage-workflow-v2/work/1520295762/pegasus-worker-4.8.2dev-x86_64_rhel_7.tar.gz





Looking at the corresponding .sh file we can see how Pegasus executed the container:

$ cat `find . -name mProject_ID0000002.sh`
...
singularity exec --pwd /srv --scratch /var/tmp --scratch /tmp --home $PWD:/srv montage.simg ./mProject_ID0000002-cont.sh
...





The ./mProject_ID0000002-cont.sh is a script generated at runtime, containing the execution of the user codes.







          

      

      

    

  

    
      
          
            
  
Distributed Computing with Makeflow and Work Queue


1. Prerequisites

‘ssh’ will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors will supply a slip of paper with username, password and hostname during the session.

This tutorial will also be linked to from our tutorial webpage: http://ccl.cse.nd.edu/software/tutorials/cyversecc18/

Our website is located at: http://ccl.cse.nd.edu/

You can get the slides from this talk there as well as additional material for our tools.




2. Cooperative Computing Lab

The CCL designs software that enables our collaborators to easily harness large scale distributed systems such as clusters, clouds, and grids. We perform fundamental computer science research that enables new discoveries through computing in fields such as physics, chemistry, bioinformatics, biometrics, and data mining.

The software suite we write and maintain is the CCTools software package.


	Makeflow. A portable workflow manager. Link [http://ccl.cse.nd.edu/software/makeflow/]


	Work Queue. A lightweight distributed execution system. Link [http://ccl.cse.nd.edu/software/workqueue/]


	Parrot. A personal user-level virtual file system. Link [http://ccl.cse.nd.edu/software/parrot/]


	Chirp. A user-level distributed filesystem. Link [http://ccl.cse.nd.edu/software/chirp/]


	Specialized Software. A selection of applications tailored to specific compuation tasks.







2. Makeflow

Makeflow is a workflow system for executing large complex workflows on clusters, clouds, and grids.


	Makeflow is easy to use. The Makeflow language is similar to traditional Make, so if you can write a Makefile, then you can write a Makeflow. A workflow can be just a few commands chained together, or it can be a complex application consisting of thousands of tasks. It can have an arbitrary DAG structure and is not limited to specific patterns.


	Makeflow is production-ready. Makeflow is used on a daily basis to execute complex scientific applications in fields such as data mining, high energy physics, image processing, and bioinformatics. It has run on campus clusters, the Open Science Grid, NSF XSEDE machines, NCSA Blue Waters, and Amazon Web Services. Here are some real examples of workflows used in production systems:


	Makeflow is portable. A workflow is written in a technology neutral way, and then can be deployed to a variety of different systems without modification, including local execution on a single multicore machine, public cloud services such as Amazon EC2 and Amazon Lambda, batch systems like HTCondor, SGE, PBS, Torque, SLURM, or the bundled Work Queue system. Makeflow can also easily run your jobs in a container environment like Docker or Singularity on top of an existing batch system. The same specification works for all systems, so you can easily move your application from one system to another without rewriting everything.


	Makeflow is powerful. Makeflow can handle workloads of millions of jobs running on thousands of machines for months at a time. Makeflow is highly fault tolerant: it can crash or be killed, and upon resuming, will reconnect to running jobs and continue where it left off. A variety of analysis tools are available to understand the performance of your jobs, measure the progress of a workflow, and visualize what is going on.







2. Work Queue

Work Queue is a framework for building large master-worker applications that span thousands of machines drawn from clusters, clouds, and grids. Work Queue applications are written in C, Perl, or Python using a simple API that allows users to define tasks, submit them to the queue, and wait for completion. Tasks are executed by a standard worker process that can run on any available machine. Each worker calls home to the master process, arranges for data transfer, and executes the tasks. The system handles a wide variety of failures, allowing for dynamically scalable and robust applications.

Work Queue has been used to write applications that scale from a handful of workstations up to tens of thousands of cores running on supercomputers. Examples include Lobster, NanoReactors, ForceBalance, Accelerated Weighted Ensemble, the SAND genome assembler, the Makeflow workflow engine, and the All-Pairs and Wavefront abstractions. The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing, distributed computing, and cyberinfrastructure at the University of Notre Dame, the University of Arizona, and the University of Wisconsin - Eau Claire.




3. Makeflow Tutorial

This tutorial goes through the installation process of CCTools,
the creation and running of a Makeflow, and
how to use Makeflow in conjunction with Work Queue to leverage different execution resources for your execution.
More information can be found a http://ccl.cse.nd.edu/. For specific information on
Makeflow execution see http://ccl.cse.nd.edu/software/manuals/makeflow.html and
Work Queue see http://ccl.cse.nd.edu/software/manuals/workqueue.html.




3.1. Running on Atmosphere/Jetstream

To start out we are going to launch an instance:

We are going to be using an Ubuntu instance with Docker already installed:
Ubuntu 16.04 Devel and Docker v.1.13 [https://use.jetstream-cloud.org/application/images/107]

Please note you should use images of at least Medium size.

Once the instance is up, we are going to add a few packages to allow for easy installation.
Most of these packages are already installed on batch submission sites, but possibly not in all
Jetstream instances.

$ sudo apt-get install zlib1g-dev libncurses5-dev g++





Additionally, we are going to add our current user to the docker group:

$ sudo usermod -aG docker ${USER}





We are also going to install
Singularity if you have not done so yet. This should be done using the
provided ansible script:

$ ezs





After adding this log out and back in.

$ exit





Now re-open the in web-shell.
Once you are logged back in, we are going to pull the docker image we will use today:

$ docker pull nekelluna/ccl_makeflow_examples
$ docker save -o mfe.tar nekelluna/ccl_makeflow_examples
$ singularity pull docker://nekelluna/ccl_makeflow_examples





Note: If you would like to test this out with Work Queue on another machine, now is a great time
to launch and do these setup steps on each machine. Hint hint you should do this.




3.2. Download and Installation

Once you have a shell, download and install the CCTools software in your home directory in one of two ways:

To build our latest release:

$ wget http://ccl.cse.nd.edu/software/files/cctools-6.2.6-source.tar.gz
$ tar zxpvf cctools-6.2.6-source.tar.gz
$ cd cctools-6.2.6-source
$ ./configure --prefix $HOME/cctools --tcp-low-port 9000 --tcp-high-port 9500
$ make
$ make install
$ cd $HOME





If you use bash then do this to set your path:

$ export PATH=$HOME/cctools/bin:$PATH





If you use tcsh instead, then do this:

$ setenv PATH $HOME/cctools/bin:$PATH





Now double check that you can run the various commands, like this:

$ makeflow -v
$ work_queue_worker -v
$ work_queue_status








3.3. Getting Makeflow-Examples

As a good reference point for workflow design and examples we are going to use our
Makeflow Examples [https://github.com/cooperative-computing-lab/makeflow-examples] repository.

$ git clone https://github.com/cooperative-computing-lab/makeflow-examples.git
  -- or --
$ wget https://github.com/cooperative-computing-lab/makeflow-examples/archive/master.zip





If you used wget to pull down the zip file remember to unzip and enter this directory:

$ unzip master.zip
$ mv master makeflow-examples
$ cd makeflow-examples








4.1. Makeflow Example

Let’s begin by using Makeflow to run a handful of simulation codes.
First, make and enter a clean directory to work in inside of makeflow-examples:

$ cd $HOME/makeflow-examples
$ mkdir tutorial
$ cd tutorial





Download this program, which performs a highly sophisticated simulation of black holes colliding together:

$ wget http://ccl.cse.nd.edu/software/tutorials/cyversecc18/simulation.py





Try running it once, just to see what it does:

$ chmod 755 simulation.py
$ ./simulation.py 5





Now, let’s use Makeflow to run several simulations.
Create a file called example.makeflow and paste the following
text into it:

input.txt:
    LOCAL /bin/echo "Hello Makeflow!" > input.txt

output.1: simulation.py input.txt
    ./simulation.py 1 < input.txt > output.1

output.2: simulation.py input.txt
    ./simulation.py 2 < input.txt > output.2

output.3: simulation.py input.txt
    ./simulation.py 3 < input.txt > output.3

output.4: simulation.py input.txt
    ./simulation.py 4 < input.txt > output.4





To run it on your local machine, one job at a time:

$ makeflow example.makeflow -j 1





Note that if you run it a second time, nothing will happen, because all of the files are built:

$ makeflow example.makeflow
$ makeflow: nothing left to do





Use the -c option to clean everything up before trying it again:

$ makeflow -c example.makeflow





Here are some other options for built-in batch systems:

$ makeflow -T slurm example.makeflow
$ makeflow -T torque example.makeflow
$ makeflow -T sge example.makeflow








4.2. Running Makeflow with Work Queue

You will notice that a workflow can run very slowly if you submit each job individually. To get around this limitation, we provide the Work Queue system. This allows Makeflow to function as a master process that quickly dispatches work to remote worker processes.

$ makeflow -c example.makeflow
$ makeflow -T wq example.makeflow -p 0
listening for workers on port XXXX.
...





Now open up another shell and run a single worker process:

$ work_queue_worker crcfe01.crc.nd.edu XXXX





Go back to your first shell and observe that the makeflow has finished.
Of course, remembering port numbers all the time gets old fast,
so try the same thing again, but using a project name:

$ makeflow -c example.makeflow
$ makeflow -T wq example.makeflow -N project-$USER
listening for workers on port XXXX
...





Now open up another shell and run your worker with a project name:

$ work_queue_worker -N project-$USER








5. Using Containers with Makeflow

We are going to start using Containers in the Makeflow by showing the different configurations
that we talked about in the slides. There is a simple, 1 rule, makeflow that we will use to show
these:

hello.out:
    echo "hello, world!" > hello.out





The first configuration we discussed would be to run both the Makeflow and the Worker inside
of container to allow for a consistent environment.

We will not do this here, as that is extremely similar to running in Atmosphere/Jetstream to begin with.
This is great way to test out different software configurations when determining what is needed for a workflow
and how different software will interact.

The second configuration is to run each task inside of separate containers. This configuration is useful
for specializing the configuration each task uses and not assuming the execution site has any software
requirements aside from docker or singularity.

Assuming we are wrapping each task in a container, there are two ways to do this in Makeflow. The first is
to manually add the container to your command. This allows for precise control of how the task is executed
and in which container this occurs. We will show this now:

We are going to look at what the hello-containers folder:

$ cd $HOME/makeflow-examples
$ cd hello-containers





Inside of the hello-containers folder, there is a python script, hello_world_creator.py,
that will create a simple hello world example which uses a container:

To test with Docker:

$ python hello_world_creator.py --docker nekelluna/ccl_makeflow_examples





To test with Singularity

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ python hello_world_creator.py --singularity ccl_makeflow_examples.simg





After running these, look at hello_world.mf and see how the above run has been
wrapped by the container command. Now we are just going to run this locally:

$ makeflow hello_world.mf -T local





Now, instead of wrapping each task by hand, we are going to assume that each task will use
the same container. For this we will use Makeflow’s built in support for containers.
We will assume that the above steps for either docker or singularity have been done:

$ cd $HOME/makeflow-examples
$ cd hello-world





We are going to start from the existing hello-world example. To run Makeflow with
either docker or singularity we specify the container in the arguments:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow hello_world.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar





Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow hello_world.mf --singularity=ccl_makeflow_examples.simg





We have three additional examples that will work with the above provided container.


	5.1. BLAST in a Container


	5.2. BWA in a Container


	5.3. Text Analysis in a Container




Each of these examples may have a small amount of setup to pull/compile the software needed.




5.1. BLAST in a Container

BLAST is a common bioinformatic application used for determining alignment of a query dataset with
a known reference set. BLAST compares each line independently of each other, allowing for clear
parallelism opportunities.

$ cd $HOME/makeflow-examples
$ cd blast





We use an older BLAST executable for this example, as this creation script has not been changed. These commands
pull down the executable and a reference database.

$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/legacy.NOTSUPPORTED/2.2.26/blast-2.2.26-x64-linux.tar.gz
$ tar xvzf blast-2.2.26-x64-linux.tar.gz
$ cp blast-2.2.26/bin/blastall .
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt.44.tar.gz
$ mkdir nt
$ tar -C nt -xvzf nt.44.tar.gz





We are now going to generate a random data set to align with the reference:

$ ./fasta_generator 200 1000 > test.fasta





Based on the generated data, we will now write a makeflow:

$ ./makeflow_blast -d nt -i test.fasta -p blastn --num_seq 5 --makeflow blast_test.mf





Assuming you have already pulled the images needed for either singularity
or docker we will run them similarly to how it was done above:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow blast_test.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar





Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow blast_test.mf --singularity=ccl_makeflow_examples.simg








5.2. BWA in a Container

BWA is similar to BLAST in that it is a bioinformatics tool that aligns a query dataset
with a reference dataset. BWA does not operate on highly structured reference data like
BLAST, but uses a fasta or fastq data file for both the query and reference.

$ cd $HOME/makeflow-examples
$ cd bwa





We will download and compile the software:

$ git clone https://github.com/lh3/bwa bwa-src
$ cd bwa-src
$ make
$ cp bwa ..
$ cd ..





Create the data we will use for the analysis:

$ ./fastq_generate.pl 10000 1000 > ref.fastq
$ ./fastq_generate.pl 1000 100 ref.fastq > query.fastq





The first line creates the reference dataset and the second will create a query dataset based on a portion
of the provided reference dataset. This allows us to guarantee there will be some overlap and data analysis at
each step for this example.

Now we will create the makeflow based on the input dataset:

$ ./make_bwa_workflow --ref ref.fastq --query query.fastq --num_seq 100 > bwa.mf





Again assuming that the docker and singularity images have been pulled down, run the makeflow:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow bwa.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar





Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow bwa.mf --singularity=ccl_makeflow_examples.simg








5.3. Text Analysis in a Container

The test analysis example that we are providing is a simple makelfow that analyzes a set
of Shakespeare’s plays. This workflow gives an example of using Makeflow to parallelize
a text search through a collection of William Shakespeare’s plays.
Makeflow will download the plays, package up the version of Perl at the location Makeflow is running,
and run a text analysis Perl script in parallel to figure out which character had the most dialogue
out of the plays selected.

$ cd $HOME/makeflow-examples
$ cd shakespeare





This workflow relys on Perl and CCTools being installed, so there is no further setup needed.

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow shakespeare.makeflow --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar





Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow shakespeare.makeflow --singularity=ccl_makeflow_examples.simg











          

      

      

    

  

    
      
          
            
  
Introduction to Biocontainers

BioContainers is a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute Bioinformatics containers with special focus in Proteomics, Genomics, Transcriptomics and Metabolomics. BioContainers is based on the popular frameworks of Docker.

BioContainers Goals:


	Provide a base specification and images to easily build and deploy new bioinformatics/proteomics software including the source and examples.


	Provide a series of containers ready to be used by the bioinformatics community (https://github.com/BioContainers/containers).


	Define a set of guidelines and specifications to build a standardized container that can be used in combination with other containers and bioinformatics tools.


	Define a complete infrastructure to develop, deploy and test new bioinformatics containers using continuous integration suites such as Travis Continuous Integration (https://travisci. org/), Shippable (https://app.shippable.com/) or manually built solutions.


	Provide support and help to the bioinformatics community to deploy new containers for researchers that do not have bioinformatics support.


	Provide guidelines and help on how to create reproducible pipelines by defining, reusing and reporting specific container versions which will consistently produce the exact same result and always be available in the history of the container.


	Coordinate and integrate developers and bioinformaticians to produce best practice of documentation and software development.





Developing biocontainers


1. Docker based Biocontainers

1.1 - How to Request a Biocontainer?

Users can request a container by opening an issue in the containers repository [http://github.com/BioContainers/containers/issues]

[image: biocontainer-3]

The issue should contains the name of the software, the url of the code or binary to be package and information about the software. When the containers is deployed and fully functional, the issue will be closed by the developer or the contributor to BioContainers.

1.1.1 - Use a BioContainer

When a container is deployed and the developer closes the issue in GitHub the user received a notification that the container is ready.

[image: biocontainer-4]

[image: biocontainer-5]

The user can then use docker pull or docker run for the corresponding container from quay.io/biocontainers. For example

docker pull quay.io/biocontainers/khmer:2.1.2--py36_0






Note

Reporting a problem with a container:
If the user find a problem with a container an issue should be open in the container repository, the user should use the broken tag (see tags). Developers of the project will pick-up the issue and deploy a new version of the container. A message will be delivered when the containers has been fixed.



1.2 - Create a Dockerfile for Biocontainer

If you are familiar with Docker (which you are by now!), then instead of requesting a biocontainer, you can create a Dockerfile and then submit the Dockerfile for biocontainer


	BioContainers dockerfile template





Note

Please always follow the best practices and help pages using input and output files information.



Below is the complete example of a BioContainers Dockerfile:

# Base Image
FROM biocontainers/biocontainers:latest

# Metadata
LABEL base.image="biocontainers:latest"
LABEL version="3"
LABEL software="Comet"
LABEL software.version="2016012"
LABEL description="an open source tandem mass spectrometry sequence database search tool"
LABEL website="http://comet-ms.sourceforge.net/"
LABEL documentation="http://comet-ms.sourceforge.net/parameters/parameters_2016010/"
LABEL license="http://comet-ms.sourceforge.net/"
LABEL tags="Proteomics"

# Maintainer
MAINTAINER Felipe da Veiga Leprevost <felipe@leprevost.com.br>

USER biodocker

RUN ZIP=comet_binaries_2016012.zip && \
  wget https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP -O /tmp/$ZIP && \
  unzip /tmp/$ZIP -d /home/biodocker/bin/Comet/ && \
  chmod -R 755 /home/biodocker/bin/Comet/* && \
  rm /tmp/$ZIP

RUN mv /home/biodocker/bin/Comet/comet_binaries_2016012/comet.2016012.linux.exe /home/biodocker/bin/Comet/comet

ENV PATH /home/biodocker/bin/Comet:$PATH

WORKDIR /data/

CMD ["comet"]





1.2.1 - Run it!, Test it! Once the container is ready you should test it, try to run your program using the run command, check if all its functionalities are in order.

1.2.2 - Contribute if everything looks OK. You can contribute to the BioContainers project by sending your Dockerfile.




2. Bioconda based Biocontainers

In contrast to traditional Biocontainers, Bioconda based Biocontainers offers a very easy way to create efficient containers that are minimal in size, tested and not rely on writing a Dockerfile.

The preferred way to do this is to write a conda package and submit this it the BioConda communtiy. As soon as your PR is merged and continues integration testing was successful, a container is built and publish it at quay.io [https://quay.io/organization/biocontainers].

In summary, a BioConda recipe should contain the following parts:


	Source URL is stable (details)


	md5 or sha256 hash included for source download (details)


	Appropriate build number (details)


	.bat file for Windows removed (details)


	Remove unnecessary comments (details)


	Adequate tests included


	Files created by the recipe follow the FSH (details)


	License allows redistribution and license is indicated in meta.yaml


	Package does not already exist in the defaults, r, or conda-forge channels with some exceptions (details)


	Package is appropriate for bioconda


	If the recipe installs custom wrapper scripts, usage notes should be added to extra -> notes in the meta.yaml.




Example Yaml for unicycler tool:

package:
  name: unicycler
  version: 0.3.0b

build:
  number: 0
  skip: True # [py27]

source:
  fn: unicycler_0.3.0b.tar.gz
  url: https://github.com/rrwick/Unicycler/archive/906a3e7f314c7843bf0b4edf917593fc10baee4f.tar.gz
  md5: 5f06d2bd8ef5065c8047421db8c7895f

requirements:
  build:
  - python
  - setuptools
  - gcc

  run:
  - python
  - libgcc
  - spades >=3.6.2
  - pilon
  - java-jdk
  - bowtie2
  - samtools >=1.0
  - blast
  - freebayes

test:
  commands:
    - unicycler -h
    - unicycler_align -h
    - unicycler_check -h
    - unicycler_polish -h

about:
  home: https://github.com/rrwick/Unicycler
  license: GPL-3.0
  license_file: LICENSE
  summary: 'Hybrid assembly pipeline for bacterial genomes'





When the recipe is ready a Pull Request should be created on the bioconda-recipes github repo [https://bioconda.github.io/contribute-a-recipe.html#push-changes-wait-for-tests-to-pass-submit-pull-request]. Finally the container is automatically created for the new BioConda Package if everything is corrected

The following are the detailed steps involved in creating bioconda based biocontainers:

2.1 - One-time Setup

2.1.1 - Install Bioconda

Bioconda is a channel for the conda package manager specializing in bioinformatics software. It consists of:


	A repository of recipes hosted on GitHub


	A build system that turns these recipes into conda packages


	A repository of >1500 bioinformatics packages ready to use with a simple conda install command




Over 130 contributors that add, modify, update and maintain the recipes


Important

Recipe vs package
A recipe is a directory containing small set of files that defines name, version, dependencies, and URL for source code. A recipe
typically contains a meta.yaml file that defines these settings and a build.sh script that builds the software. A recipe is
converted into a package by running “conda-build” on the recipe.
A package is a bgzipped tar file (.tar.bz2) that contains the built software. Packages are uploaded to anaconda.org so that users can install them with “conda install” command.



Bioconda requires the conda package manager to be installed. If you have an Anaconda Python installation, you already have it.
Otherwise, the best way to install it is with the Miniconda package.


Warning

Bioconda supports only 64-bit Linux and Mac OSX. The Python 3 version is recommended.



Install miniconda specific for your platform. The following code shows the Miniconda installation on MacOSX and Linux


	MacOSX




wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh






	Linux




wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh





Accept all the default settings and let conda prepend the PATH in ~/.bashrc

source ~/.bashrc





If you already have miniconda installed on your MacOSX/Linux, you can update that using

conda upgrade conda
conda upgrade conda-build





2.1.2 - Setting up of Channels of Bioconda

After installing conda you will need to add the Bioconda channel as well as the other channels Bioconda depends on. It is important to run the following commands in this order so that the priority is set correctly.

conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda





2.1.3 - Test Bioconda installation

After installing Bioconda and setting-up channels, test to see if the installation of Bioconda worked properly by installing a package

conda install <package>

# Example
conda install bwa
# Or a specific version can be installed like this
conda install bwa=0.7.12





If there are no errors during installation of bwa, your Bioconda set-up is complete

2.1.4 - Next, create a fork of bioconda-recipes repo onto your GitHub account and then clone it locally.


Warning

Create a github account if you don’t have one already.



git clone https://github.com/<githubUSERNAME>/bioconda-recipes.git





2.1.5 - Add the main bioconda-recipes repo as an upstream remote to more easily update your branch with the upstream master branch

cd bioconda-recipes
git remote add upstream https://github.com/bioconda/bioconda-recipes.git





2.1.6 - Request to be added to the Bioconda team

While not required, you can be added to the Bioconda by posting in Issue #1 [https://github.com/bioconda/bioconda-recipes/issues/1]. Members of the Bioconda team can merge their own recipes once tests pass, though we ask that first-time contributions and anything out of the ordinary be reviewed by the @bioconda/core team.

Even if you are a member of the Bioconda team with push access, using your own fork will allow testing of your recipes
on travis-ci using your own account’s free resources without consuming resources allocated by travis-ci to the Bioconda
group. This makes the tests go faster for everyone.

Create the Tool’s Required Bioconda recipe (for generating Biocontainers)

2.1.7 - Update Bioconda repo and requirements

Before starting, it’s best to update your fork with any changes made recently to the upstream Bioconda repo. Assuming you’ve set up your fork as above:

git checkout master
git pull upstream master





2.1.8 - Checkout a new branch

Check out a new branch in your fork (here the branch is arbitrarily named my-recipe):

git checkout -b my-recipe





2.1.9 - Create the recipe

Before you create a recipe, make sure to check that package exists for that recipe. If the package is already present, then you don’t need to create the recipe.
There are couple of ways to check for the package


	Search for the package name in here [http://bioconda.github.io/recipes.html]


	Search for the package name on the command line




conda search <package> -c bioconda

# Example
conda search taco -c bioconda





If the package of your interest, is not available, you can create the Bioconda recipe for the tool of your interest as below

conda skeleton <source> <package>






Note

Source: The source of the tool can be pypi, cran, bioconductor or cpan. Guidelines for Bioconda recipe [https://bioconda.github.io/guidelines.html]
Package: The name of the package



If the tool is not available from any of the above sources, then you need to generate a Bioconda package from scratch.

2.2.0 - Test it locally

After creating your recipe (using one of the above methods), to make sure your recipe works, you need to test it locally. There are two options.

2.2.1 - Quick test

The quickest, but not necessarily most complete, is to run conda-build command directly

conda install conda-build
conda build ./<package>

# Example
conda build bowtie2/2.2.4





2.2.2 - Push your changes to your fork on github repo

Once your tests are successful, before pushing your changes to your fork on github, it is best to merge any changes that have happened recently on the upstream master branch. See sycncing a fork for details, or run

git fetch upstream





syncs the fork’s master branch with upstream

git checkout master
git merge upstream/master





merges those changes into the recipe’s branch

git checkout my-recipe
git merge master





push your changes to your fork on github
git push origin my-recipe





2.2.3 - Open a pull request on the bioconda-recipes repo


Tip

If it’s your first recipe or the recipe is doing something non-standard, please ask @bioconda/core for a review.



2.2.4 - Test the built bioconda package and Biocontainer

After the pull request, travis-ci will again do the builds to make sure everthing works. When the pull request is merged with the master branch by Bioconda team, the package will be uploaded to anaconda.org and Biocontainers will be pushed to quay.io.

2.2.5 - Testing the Bioconda package

Once the Bioconda package is available on Anaconda and biocontainer is available on quay.io, it may be a good idea to test those in staging first, so that production jobs aren’t interrupted.

2.2.5.1 - Install the built Bioconda package from Anaconda (optional but recommended)

conda create -n myenvironment my-package # This is optional but it is always good to test this





This method will install the package in the /home/username/minconda3/envs/myenvironment/bin

2.2.5.2 - Testing the Biocontainer


	Pull your Biocontainer from quay.io of your new recipe (Mandatory)




docker pull quay.io/biocontainers/<my-package>:<version-number>--<python-version>_<built-number>





Run the tool’s Biocontainer using the image:tag name, sample parameters, and inputs given in the tool request with a docker run command.

If the tool crashes, or the output does not match the sample output, contact the Bioconda or the user who creates the Biocontainers.
Clean up any data containers and dangling images created in testing with docker rm -v and docker rmi commands.
This command will cleanup any ‘dangling’ images:

docker rmi $(docker images -f 'dangling=true' -q)










The BioContainers Registry

BioContainers Registry UI provides the interface to search, tag, and document a BioContainers across all the registries.

[image: biocontainer-1]

The users can search containers by using the search box

[image: biocontainer-2]

The containers registry allow the users to sort the containers by any of these properties:


	Container Name: Container Name


	Description: Description Provided by the developer of the container.


	Real Name: The corresponding registry + container name


	Last Modified: Last date where the container has been modified.


	Starred/Start: If the container has been starred in any of the repos.


	Popularity: How many times a container has been pull from a registry.


	Registry Link: the registry Link.










          

      

      

    

  

    
      
          
            
  
Biocontainers in HPC

On HPC systems, the traditional way to make software available is through the “modules” system.  The modules system allows administrators to install hundreds of scientific software packages on a system, including multiple versions of the same package, and then users can select the packages they want loaded into their environment.

Adding a package into the modules system can take a lot of work.  At TACC, the process of adding a module looks something like this:


	Manually install the software on the system as a test to figure out the best compiler optimizations, account for any dependencies, etc.


	Encode the installation process into an RPM file, add relevant metadata to the RPM, and craft a “modulefile” that lets the modules system discover the app.


	Build the RPM and put the compiled package in a designated location.


	Send a ticket to the administrators so that they can install the package during the next maintenance.


	System administrators install the package through a scripted process that installs the package on the local harddrive on every node on the system (often thousands of nodes)


	Next time users look for the package using the “modules” command, it will show up and be available for use.





Note

New systems are usually different enough from the old systems that RPM files must be altered manually every time, for every package.  TACC usually has 6-10 production systems that need scientific software RPMs. For examples of what goes into an RPM file, you can look in this Github repository [https://github.com/TACC/lifesci_spec]




Installing thousands of apps on a cluster

As the BioContainers project has demonstrated, the Bioinformatics community alone uses thousands of software packages.  What can users of HPC systems do to gain access to the software they care about when the modules system cannot keep up?

Bjorn Gruning from the University of Freiburg, along with many many collaborators from the BioContainers community has championed the inclusion of Singularity images from the BioContainers project.  This means that every app with a Conda recipe also has a Singularity image for it.  They are publicly available via FTP here: https://depot.galaxyproject.org/singularity/

They are also already available on every TACC system on the global work filesystem in this directory:

/work/projects/singularity/TACC/biocontainers/





There are over 7200 Singularity images currently available in that directory.  (So be careful trying to do an “ls” command there!

All the images are named in the format: name_version.img.  They were converted from Docker containers using the docker2singularity script that adds top level directories (like “/work”) to make sure that volume mounts will work on the HPC systems.  If you use TACC, you can check for a software package, for example, bwa, like this:

$ find /work/projects/singularity/TACC/biocontainers/ -name bwa*
/work/projects/singularity/TACC/biocontainers/bwameth_0.20--py35_0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.5.9--0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.17--pl5.22.0_0.img
/work/projects/singularity/TACC/biocontainers/bwameth_0.2.0--py36_1.img
/work/projects/singularity/TACC/biocontainers/bwameth_0.2.0--py36_0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.13--1.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.15--1.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.16--pl5.22.0_0.img





To test the image interactively (from a compute node!) you can do something like the following:

# get an interactive session
idev
# load the Singularity module
module load tacc-singularity
# explore the container
singularity shell /work/projects/singularity/TACC/biocontainers/bwa_0.7.15--1.img






Note

If you run the container from your $WORK directory, Singularity will by default volume mount /work into the container, and all your $WORK files will be available.



From there, you are ready to incorporate “singularity exec” commands into your job submission scripts just like you would any other command.







          

      

      

    

  

    
      
          
            
  
Docker related resources

Awesome Docker [https://veggiemonk.github.io/awesome-docker/]

Docker labs [https://github.com/docker/labs]

Docker Community Slack [https://community.docker.com/registrations/groups/4316]

Docker Community Forums [https://forums.docker.com/]

Docker hub [https://hub.docker.com/]

Docker documentation [http://docs.docker.com/]

Docker on StackOverflow [https://stackoverflow.com/questions/tagged/docker]

Docker on Twitter [http://twitter.com/docker]

Play With Docker Hands-On Labs [http://training.play-with-docker.com/]

Docker tips [https://blog.docker.com/2018/01/5-tips-learn-docker-2018/]

Docker cloud [https://cloud.docker.com]

Docker store [https://store.doc]

Interesting tutorials and blog posts:


	Docker Blog [http://blog.docker.com/]


	A beginner friendly intro to VMs and Docker [https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b#.3giab6wvo]


	Intro to Docker from Neurohackweek [https://neurohackweek.github.io/docker-for-scientists/]


	Understanding Images [https://code.tutsplus.com/tutorials/docker-from-the-ground-up-understanding-images--cms-28165]








          

      

      

    

  

    
      
          
            
  
Singularity related resources

Singularity Homepage [https://www.sylabs.io/guides/2.6/user-guide/index.html#]

Singularity Hub [https://www.singularity-hub.org/]

University of Arizona Singularity Tutorials [https://docs.hpc.arizona.edu/display/UAHPC/Singularity+Tutorials]

NIH HPC [https://hpc.nih.gov/apps/singularity.html]

Dolmades - Windows Apps in Linux Docker-Singularity Containers [http://dolmades.org] Warning not tested


Singularity Talks

Gregory Kurtzer, creator of Singularity has provided two good talks online: Introduction to Singularity [https://wilsonweb.fnal.gov/slides/hpc-containers-singularity-introductory.pdf], and Advanced Singularity [https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf].

Vanessa Sochat, lead developer of Singularity Hub, also has given a great talk on Singularity [https://docs.google.com/presentation/d/14-iKKUpGJC_1qpVFVUyUaitc8xFSw9Rp3v_UE9IGgjM/pub?start=false&loop=false&delayms=3000&slide=id.g1c1cec989b_0_154] which you can see online.







          

      

      

    

  

    
      
          
            
  
Other resources

University of Arizona Campus Resources


	UA Campus Accessibility [http://www.arizona.edu/campus-accessibility]


	UA Campus Transportation [https://parking.arizona.edu/campus-services/cattran/]


	Family Spaces and Lactation Support [https://lifework.arizona.edu/cc/lactation_information]


	BIO5 Institute [http://www.bio5.org/]


	Transportation beyond BIO5 and UA campus [http://www.sunlinkstreetcar.com/]








          

      

      

    

  

    
      
          
            
  
For instructors!

Coordinating Web site work

Please create a pull request as soon as you start editing something,
rather than waiting!  That way you can tell others what you’re working on.

You could/should also mention it on Slack in the “cc-leads” channel.

Technical info re adding content to the Web site

All the Container Camp workshop tutorials are stored on GitHub [https://github.com/CyVerse-learning-materials/container_camp_workshop_2018].

We will use GitHub Flow [https://guides.github.com/introduction/flow/] for updates: from the command line,



	fork container camp repository;


	edit, change, add, etc;


	submit a PR;


	when ready to review & merge say ‘ready for review & merge @cc2018’.







It’s important that all updates go through code review by
someone. Anyone with push access to the repo can review and merge!

From the Web site, you should be able to edit the files and then set up a
PR directly. You can also fork the repo, perform multiple edits and submit a PR through the web interface.

Updating the “official” Web site.

The Web site [https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/], will update automatically
from GitHub.  However, it may take 5-15 minutes to do so.

Building a local copy of the Web site.

Briefly,


	clone the repo:

git clone https://github.com/CyVerse-learning-materials/container_camp_workshop_2018.git



	set up a virtualenv with python2 or python3:

python -m virtualenv buildenv -p python3.5; . ~/buildenv/bin/activate



	install the prerequisites:

pip install -r requirements.txt



	build site:

make html



	open / click on

_build/html/index.html





Formatting, guidelines, etc.

Everything can/should be in
Restructured text [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet!]
If you’re not super familiar with Restructured text, you can use
online restructured text editor to write your tutorials.

(Note that you can go visit the github repo and it will helpfully render
.rst files for you if you click on them! They just won’t have the full
site template.)

Files and images that don’t need to be “compiled” and should just be
served up through the web site can be put in the _static
directory; their URL will then be


https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/_static/filename




Images

Image formatting in Restructured text is pretty straightforward. Here is an example

[image: static_site_docker]

.. |static_site_docker| image:: ../img/static_site_docker.png


:width: 750




:height: 700







          

      

      

    

  

    
      
          
            
  
Problems? Bugs? Questions?


	If there is a bug and you can fix it: submit a PR. Make sure that I know who you are so that I can thank you.


	If there is a bug and you can’t fix it, but you can reproduce it: submit an issue explaining how to reproduce.


	If there is a bug and you can’t even reproduce it: sorry. It is probably an Heisenbug. We can’t act on it until it’s reproducible, alas.


	If you have attended this workshop and have feedback, or if you want somebody to deliver that workshop at your conference or for your company: you can contact one of us!




upendra at cyverse dot org

Thank you!





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  

name: Triage for Release
about: Checklist for upgrading to Learning Center 2.0
title: Triage for [Project Title] Release [X.X.X]
labels: 2.0 Release
assignees: ‘’



This is a checklist issue. As we review each repo we should check the following
items.


1. Check on file versions (all files below should have a version comment in the first line of the file)


	[ ] misc/static/cyverse.css is version 2.0


	[ ] misc/static/cyverse.js is version 2.0


	[ ] misc/static/detail-expand.css is version 2.0


	[ ] misc/static/detail-expand.js is version 2.0


	[ ] misc/static/intercom-script-for-learning.js is version 2.0


	[ ] misc/static/question-answer.js is version 2.0


	[ ] misc/static/jquery.tablesorter.min.js is version 2.0


	[ ] misc/cyverse_spinx_conf.py is version 2.0


	[ ] conf.py is version 2.0 and you have updated the name of the documentation (check the project =’ line, your index.rst should have
the appropriate name)


	[ ] cyverse_rst_defined_substitutions.txt is version 2.0


	[ ] License.md is version 2.0







2. Check on the following required formatting for all pages


	[ ] All .rst pages begin with the following

.. include:: cyverse_rst_defined_substitutions.txt
.. include:: custom_urls.txt

 |CyVerse_logo|_

|Home_Icon|_
`Learning Center Home <http://learning.cyverse.org/>`_







	[ ] Documentation contains maintainer info on index.rst or the appropriate
first page. This should be placed directly before the table of contents.

Manual Maintainer(s)
------------------------

Who to contact if this manual needs fixing. You can also email
`Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

.. list-table::
    :header-rows: 1

    * - Maintainer
      - Institution
      - Contact
   * - Your Name
      - CyVerse / UA
      - Yourname@email.com







	[ ]  Documentation contains the fix/improve instructions on all .rst pages

**Fix or improve this documentation**

- Search for an answer:
   |CyVerse Learning Center|
- Ask us for help:
  click |Intercom| on the lower right-hand side of the page
- Report an issue or submit a change:
  |Github Repo Link|
- Send feedback: `Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_







	[ ] All hyperlinks in documentation are on the repo’s custom_urls.txt or cyverse_rst_defined_substitutions.txt
Note:  We want to avoid:


	Best practice is to AVOID inline hyperlinks


	Where possible links should NOT be on the .rst page but on a single
document that is included. (e.g. custom_urls.txt or cyverse_rst_defined_substitutions.txt)


	custom_urls.txt should be for URLS specific to that repo


	cyverse_rst_defined_substitutions.txt is a list of generic links to
other CyVerse and Learning Center pages


	Links should have the form below and open in a new tab:

    .. |Link Title| raw:: html

   <a href="https://LINK.URL" target="blank">Link Title</a>











	[ ] Check the |Github Repo Link| on each .rst page and ensure it links to the correct GitHub repository for this documentation.







3. Overall quality


	[ ] Maintainer is assigned and has approved the content


	[ ] Editor has checked for quality (spelling, formatting, etc.)


	[ ] Sample/test data is available with anonymous/public read access
in the appropriate directory at /iplant/home/shared/cyverse_training








          

      

      

    

  

    
      
          
            
  A collection of tools for internationalizing Python applications.



          

      

      

    

  

    
      
          
            
  UNKNOWN



          

      

      

    

  

    
      
          
            
  
Jinja2

Jinja2 is a template engine written in pure Python.  It provides a
Django [https://www.djangoproject.com/] inspired non-XML syntax but supports inline expressions and
an optional sandboxed [https://en.wikipedia.org/wiki/Sandbox_(computer_security)] environment.


Nutshell

Here a small example of a Jinja template:

{% extends 'base.html' %}
{% block title %}Memberlist{% endblock %}
{% block content %}
  <ul>
  {% for user in users %}
    <li><a href="{{ user.url }}">{{ user.username }}</a></li>
  {% endfor %}
  </ul>
{% endblock %}








Philosophy

Application logic is for the controller but don’t try to make the life
for the template designer too hard by giving him too few functionality.

For more informations visit the new Jinja2 webpage [http://jinja.pocoo.org/] and documentation [http://jinja.pocoo.org/2/documentation/].







          

      

      

    

  

    
      
          
            
  
MarkupSafe

Implements a unicode subclass that supports HTML strings:

>>> from markupsafe import Markup, escape
>>> escape("<script>alert(document.cookie);</script>")
Markup(u'&lt;script&gt;alert(document.cookie);&lt;/script&gt;')
>>> tmpl = Markup("<em>%s</em>")
>>> tmpl % "Peter > Lustig"
Markup(u'<em>Peter &gt; Lustig</em>')





If you want to make an object unicode that is not yet unicode
but don’t want to lose the taint information, you can use the
soft_unicode function.  (On Python 3 you can also use soft_str which
is a different name for the same function).

>>> from markupsafe import soft_unicode
>>> soft_unicode(42)
u'42'
>>> soft_unicode(Markup('foo'))
Markup(u'foo')






HTML Representations

Objects can customize their HTML markup equivalent by overriding
the __html__ function:

>>> class Foo(object):
...  def __html__(self):
...   return '<strong>Nice</strong>'
...
>>> escape(Foo())
Markup(u'<strong>Nice</strong>')
>>> Markup(Foo())
Markup(u'<strong>Nice</strong>')








Silent Escapes

Since MarkupSafe 0.10 there is now also a separate escape function
called escape_silent that returns an empty string for None for
consistency with other systems that return empty strings for None
when escaping (for instance Pylons’ webhelpers).

If you also want to use this for the escape method of the Markup
object, you can create your own subclass that does that:

from markupsafe import Markup, escape_silent as escape

class SilentMarkup(Markup):
    __slots__ = ()

    @classmethod
    def escape(cls, s):
        return cls(escape(s))








New-Style String Formatting

Starting with MarkupSafe 0.21 new style string formats from Python 2.6 and
3.x are now fully supported.  Previously the escape behavior of those
functions was spotty at best.  The new implementations operates under the
following algorithm:


	if an object has an __html_format__ method it is called as
replacement for __format__ with the format specifier.  It either
has to return a string or markup object.


	if an object has an __html__ method it is called.


	otherwise the default format system of Python kicks in and the result
is HTML escaped.




Here is how you can implement your own formatting:

class User(object):

    def __init__(self, id, username):
        self.id = id
        self.username = username

    def __html_format__(self, format_spec):
        if format_spec == 'link':
            return Markup('<a href="/user/{0}">{1}</a>').format(
                self.id,
                self.__html__(),
            )
        elif format_spec:
            raise ValueError('Invalid format spec')
        return self.__html__()

    def __html__(self):
        return Markup('<span class=user>{0}</span>').format(self.username)





And to format that user:

>>> user = User(1, 'foo')
>>> Markup('<p>User: {0:link}').format(user)
Markup(u'<p>User: <a href="/user/1"><span class=user>foo</span></a>')





Markupsafe supports Python 2.6, 2.7 and Python 3.3 and higher.







          

      

      

    

  

    
      
          
            
  
Pygments

Pygments is a syntax highlighting package written in Python.

It is a generic syntax highlighter suitable for use in code hosting, forums,
wikis or other applications that need to prettify source code.  Highlights
are:


	a wide range of over 300 languages and other text formats is supported


	special attention is paid to details, increasing quality by a fair amount


	support for new languages and formats are added easily


	a number of output formats, presently HTML, LaTeX, RTF, SVG, all image       formats that PIL supports and ANSI sequences


	it is usable as a command-line tool and as a library





	copyright

	Copyright 2006-2017 by the Pygments team, see AUTHORS.



	license

	BSD, see LICENSE for details.









          

      

      

    

  

    
      
          
            
  Sphinx is a tool that makes it easy to create intelligent and beautiful
documentation for Python projects (or other documents consisting of multiple
reStructuredText sources), written by Georg Brandl.  It was originally created
for the new Python documentation, and has excellent facilities for Python
project documentation, but C/C++ is supported as well, and more languages are
planned.

Sphinx uses reStructuredText as its markup language, and many of its strengths
come from the power and straightforwardness of reStructuredText and its parsing
and translating suite, the Docutils.

Among its features are the following:


	Output formats: HTML (including derivative formats such as HTML Help, Epub
and Qt Help), plain text, manual pages and LaTeX or direct PDF output
using rst2pdf


	Extensive cross-references: semantic markup and automatic links
for functions, classes, glossary terms and similar pieces of information


	Hierarchical structure: easy definition of a document tree, with automatic
links to siblings, parents and children


	Automatic indices: general index as well as a module index


	Code handling: automatic highlighting using the Pygments highlighter


	Flexible HTML output using the Jinja 2 templating engine


	Various extensions are available, e.g. for automatic testing of snippets
and inclusion of appropriately formatted docstrings


	Setuptools integration






          

      

      

    

  

    
      
          
            
  
What is Alabaster?

Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx [http://sphinx-doc.org] documentation system. It is Python 2+3 compatible.

It began as a third-party theme, and is still maintained separately, but as of
Sphinx 1.3, Alabaster is an install-time dependency of Sphinx and is selected
as the default theme.

Live examples of this theme can be seen on this project’s own website [http://alabaster.readthedocs.io], paramiko.org [http://paramiko.org],
fabfile.org [http://fabfile.org] and pyinvoke.org [http://pyinvoke.org].

For more documentation, please see http://alabaster.readthedocs.io.


Note

You can install the development version via pip install -e
git+https://github.com/bitprophet/alabaster/#egg=alabaster.







          

      

      

    

  

    
      
          
            
  
Certifi: Python SSL Certificates

Certifi [http://certifi.io/en/latest/] is a carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the Requests [http://docs.python-requests.org/en/latest/] project.


Installation

certifi is available on PyPI. Simply install it with pip:

$ pip install certifi








Usage

To reference the installed certificate authority (CA) bundle, you can use the
built-in function:

>>> import certifi

>>> certifi.where()
'/usr/local/lib/python2.7/site-packages/certifi/cacert.pem'





Enjoy!


1024-bit Root Certificates

Browsers and certificate authorities have concluded that 1024-bit keys are
unacceptably weak for certificates, particularly root certificates. For this
reason, Mozilla has removed any weak (i.e. 1024-bit key) certificate from its
bundle, replacing it with an equivalent strong (i.e. 2048-bit or greater key)
certificate from the same CA. Because Mozilla removed these certificates from
its bundle, certifi removed them as well.

In previous versions, certifi provided the certifi.old_where() function
to intentionally re-add the 1024-bit roots back into your bundle. This was not
recommended in production and therefore was removed. To assist in migrating old
code, the function certifi.old_where() continues to exist as an alias of
certifi.where(). Please update your code to use certifi.where()
instead. certifi.old_where() will be removed in 2018.









          

      

      

    

  

    
      
          
            
  
Chardet: The Universal Character Encoding Detector

[image: Build status]
 [https://travis-ci.org/chardet/chardet][image: ../../../../../_images/stable1.svg]
 [https://coveralls.io/r/chardet/chardet][image: Latest version on PyPI]
 [https://warehouse.python.org/project/chardet/][image: License]
	Detects

	
	ASCII, UTF-8, UTF-16 (2 variants), UTF-32 (4 variants)


	Big5, GB2312, EUC-TW, HZ-GB-2312, ISO-2022-CN (Traditional and Simplified Chinese)


	EUC-JP, SHIFT_JIS, CP932, ISO-2022-JP (Japanese)


	EUC-KR, ISO-2022-KR (Korean)


	KOI8-R, MacCyrillic, IBM855, IBM866, ISO-8859-5, windows-1251 (Cyrillic)


	ISO-8859-5, windows-1251 (Bulgarian)


	ISO-8859-1, windows-1252 (Western European languages)


	ISO-8859-7, windows-1253 (Greek)


	ISO-8859-8, windows-1255 (Visual and Logical Hebrew)


	TIS-620 (Thai)









Note

Our ISO-8859-2 and windows-1250 (Hungarian) probers have been temporarily
disabled until we can retrain the models.



Requires Python 2.6, 2.7, or 3.3+.




Installation

Install from PyPI [https://pypi.python.org/pypi/chardet]:

pip install chardet








Documentation

For users, docs are now available at https://chardet.readthedocs.io/.




Command-line Tool

chardet comes with a command-line script which reports on the encodings of one
or more files:

% chardetect somefile someotherfile
somefile: windows-1252 with confidence 0.5
someotherfile: ascii with confidence 1.0








About

This is a continuation of Mark Pilgrim’s excellent chardet. Previously, two
versions needed to be maintained: one that supported python 2.x and one that
supported python 3.x.  We’ve recently merged with Ian Cordasco [https://github.com/sigmavirus24]’s
charade [https://github.com/sigmavirus24/charade] fork, so now we have one
coherent version that works for Python 2.6+.


	maintainer

	Dan Blanchard









          

      

      

    

  

    
      
          
            
  Docutils is a modular system for processing documentation
into useful formats, such as HTML, XML, and LaTeX.  For
input Docutils supports reStructuredText, an easy-to-read,
what-you-see-is-what-you-get plaintext markup syntax.



          

      

      

    

  

    
      
          
            
  
Source Serif Pro

Source Serif Pro is a set of OpenType fonts to complement the Source Sans Pro [https://github.com/adobe-fonts/source-sans-pro] family.
In addition to a functional OpenType font, this open source project provides all of the source files that were used to build this OpenType font by using the AFDKO makeotf tool.


Installation instructions


	Mac OS X [http://support.apple.com/kb/HT2509]


	Windows [http://windows.microsoft.com/en-us/windows-vista/install-or-uninstall-fonts]


	Linux/Unix-based systems [https://github.com/adobe-fonts/source-code-pro/issues/17#issuecomment-8967116]







Getting Involved

Send suggestions for changes to the Source Serif OpenType font project maintainer, [Frank Grießhammer](mailto:opensourcefonts@adobe.com?subject=[GitHub] Source Serif Pro), for consideration.




Further information

For information about the design and background of Source Serif, please refer to the official font readme file [http://htmlpreview.github.io/?https://github.com/adobe-fonts/source-serif-pro/blob/master/SourceSerifProReadMe.html].







          

      

      

    

  

    
      
          
            
  
Guzzle Sphinx Theme

Sphinx theme used by Guzzle: http://guzzlephp.org


Installation

Install via pip:

$ pip install guzzle_sphinx_theme





or if you have the code checked out locally:

$ python setup.py install








Configuration

Add the following to your conf.py:

import guzzle_sphinx_theme

# Adds an HTML table visitor to apply Bootstrap table classes
html_translator_class = 'guzzle_sphinx_theme.HTMLTranslator'
html_theme_path = guzzle_sphinx_theme.html_theme_path()
html_theme = 'guzzle_sphinx_theme'

# Register the theme as an extension to generate a sitemap.xml
extensions.append("guzzle_sphinx_theme")

# Guzzle theme options (see theme.conf for more information)
html_theme_options = {
    # Set the name of the project to appear in the sidebar
    "project_nav_name": "Project Name",
}





There are a lot more ways to customize this theme, as this more comprehensive
example shows:

import guzzle_sphinx_theme

# Adds an HTML table visitor to apply Bootstrap table classes
html_translator_class = 'guzzle_sphinx_theme.HTMLTranslator'
html_theme_path = guzzle_sphinx_theme.html_theme_path()
html_theme = 'guzzle_sphinx_theme'

# Register the theme as an extension to generate a sitemap.xml
extensions.append("guzzle_sphinx_theme")

# Guzzle theme options (see theme.conf for more information)
html_theme_options = {

    # Set the path to a special layout to include for the homepage
    "index_template": "special_index.html",

    # Set the name of the project to appear in the left sidebar.
    "project_nav_name": "Project Name",

    # Set your Disqus short name to enable comments
    "disqus_comments_shortname": "my_disqus_comments_short_name",

    # Set you GA account ID to enable tracking
    "google_analytics_account": "my_ga_account",

    # Path to a touch icon
    "touch_icon": "",

    # Specify a base_url used to generate sitemap.xml links. If not
    # specified, then no sitemap will be built.
    "base_url": ""

    # Allow a separate homepage from the master_doc
    "homepage": "index",

    # Allow the project link to be overriden to a custom URL.
    "projectlink": "http://myproject.url",
}








Customizing the layout

You can customize the theme by overriding Jinja template blocks. For example,
“layout.html” contains several blocks that can be overridden or extended.

Place a “layout.html” file in your project’s “/_templates” directory.

mkdir source/_templates
touch source/_templates/layout.html





Then, configure your “conf.py”:

templates_path = ['_templates']





Finally, edit your override file “source/_templates/layout.html”:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{%- block extra_head %}
{# Add custom things to the head HTML tag #}
{# Call the parent block #}
{{ super() }}
{%- endblock %}






Note

If you are using Readthedocs, then you might run into an issue where they
don’t currently allow you to extend layout.html.









          

      

      

    

  

    
      
          
            
  
Internationalized Domain Names in Applications (IDNA)

Support for the Internationalised Domain Names in Applications
(IDNA) protocol as specified in RFC 5891 [http://tools.ietf.org/html/rfc5891].
This is the latest version of the protocol and is sometimes referred to as
“IDNA 2008”.

This library also provides support for Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

This acts as a suitable replacement for the “encodings.idna” module that
comes with the Python standard library, but only supports the
old, deprecated IDNA specification (RFC 3490 [http://tools.ietf.org/html/rfc3490]).

Basic functions are simply executed:

# Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト

# Python 2
>>> import idna
>>> idna.encode(u'ドメイン.テスト')
'xn--eckwd4c7c.xn--zckzah'
>>> print idna.decode('xn--eckwd4c7c.xn--zckzah')
ドメイン.テスト






Packages

The latest tagged release version is published in the PyPI repository:

[image: ../../../../../_images/idna.svg]
 [http://badge.fury.io/py/idna]


Installation

To install this library, you can use pip:

$ pip install idna





Alternatively, you can install the package using the bundled setup script:

$ python setup.py install





This library works with Python 2.6 or later, and Python 3.3 or later.




Usage

For typical usage, the encode and decode functions will take a domain
name argument and perform a conversion to A-labels or U-labels respectively.

# Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト





You may use the codec encoding and decoding methods using the
idna.codec module:

# Python 2
>>> import idna.codec
>>> print u'домена.испытание'.encode('idna')
xn--80ahd1agd.xn--80akhbyknj4f
>>> print 'xn--80ahd1agd.xn--80akhbyknj4f'.decode('idna')
домена.испытание





Conversions can be applied at a per-label basis using the ulabel or alabel
functions if necessary:

# Python 2
>>> idna.alabel(u'测试')
'xn--0zwm56d'






Compatibility Mapping (UTS #46)

As described in RFC 5895 [http://tools.ietf.org/html/rfc5895], the IDNA
specification no longer normalizes input from different potential ways a user
may input a domain name. This functionality, known as a “mapping”, is now
considered by the specification to be a local user-interface issue distinct
from IDNA conversion functionality.

This library provides one such mapping, that was developed by the Unicode
Consortium. Known as Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/],
it provides for both a regular mapping for typical applications, as well as
a transitional mapping to help migrate from older IDNA 2003 applications.

For example, “Königsgäßchen” is not a permissible label as LATIN CAPITAL
LETTER K is not allowed (nor are capital letters in general). UTS 46 will
convert this into lower case prior to applying the IDNA conversion.

# Python 3
>>> import idna
>>> idna.encode(u'Königsgäßchen')
...
idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
>>> idna.encode('Königsgäßchen', uts46=True)
b'xn--knigsgchen-b4a3dun'
>>> print(idna.decode('xn--knigsgchen-b4a3dun'))
königsgäßchen





Transitional processing provides conversions to help transition from the older
2003 standard to the current standard. For example, in the original IDNA
specification, the LATIN SMALL LETTER SHARP S (ß) was converted into two
LATIN SMALL LETTER S (ss), whereas in the current IDNA specification this
conversion is not performed.

# Python 2
>>> idna.encode(u'Königsgäßchen', uts46=True, transitional=True)
'xn--knigsgsschen-lcb0w'





Implementors should use transitional processing with caution, only in rare
cases where conversion from legacy labels to current labels must be performed
(i.e. IDNA implementations that pre-date 2008). For typical applications
that just need to convert labels, transitional processing is unlikely to be
beneficial and could produce unexpected incompatible results.




encodings.idna Compatibility

Function calls from the Python built-in encodings.idna module are
mapped to their IDNA 2008 equivalents using the idna.compat module.
Simply substitute the import clause in your code to refer to the
new module name.






Exceptions

All errors raised during the conversion following the specification should
raise an exception derived from the idna.IDNAError base class.

More specific exceptions that may be generated as idna.IDNABidiError
when the error reflects an illegal combination of left-to-right and right-to-left
characters in a label; idna.InvalidCodepoint when a specific codepoint is
an illegal character in an IDN label (i.e. INVALID); and idna.InvalidCodepointContext
when the codepoint is illegal based on its positional context (i.e. it is CONTEXTO
or CONTEXTJ but the contextual requirements are not satisfied.)




Building and Diagnostics

The IDNA and UTS 46 functionality relies upon pre-calculated lookup tables for
performance. These tables are derived from computing against eligibility criteria
in the respective standards. These tables are computed using the command-line
script tools/idna-data.

This tool will fetch relevant tables from the Unicode Consortium and perform the
required calculations to identify eligibility. It has three main modes:


	idna-data make-libdata. Generates idnadata.py and uts46data.py,
the pre-calculated lookup tables using for IDNA and UTS 46 conversions. Implementors
who wish to track this library against a different Unicode version may use this tool
to manually generate a different version of the idnadata.py and uts46data.py
files.


	idna-data make-table. Generate a table of the IDNA disposition
(e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix B.1 of RFC
5892 and the pre-computed tables published by IANA [http://iana.org/].


	idna-data U+0061. Prints debugging output on the various properties
associated with an individual Unicode codepoint (in this case, U+0061), that are
used to assess the IDNA and UTS 46 status of a codepoint. This is helpful in debugging
or analysis.




The tool accepts a number of arguments, described using idna-data -h. Most notably,
the --version argument allows the specification of the version of Unicode to use
in computing the table data. For example, idna-data --version 9.0.0 make-libdata
will generate library data against Unicode 9.0.0.

Note that this script requires Python 3, but all generated library data will work
in Python 2.6+.




Testing

The library has a test suite based on each rule of the IDNA specification, as
well as tests that are provided as part of the Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

The tests are run automatically on each commit at Travis CI:

[image: ../../../../../_images/idna1.svg]
 [https://travis-ci.org/kjd/idna]





          

      

      

    

  

    
      
          
            
  It parses image files’ header and return image size.


	PNG


	JPEG


	JPEG2000


	GIF




This is a pure Python library.



          

      

      

    

  

    
      
          
            
  
pip

The PyPA recommended [https://packaging.python.org/en/latest/current/]
tool for installing Python packages.


	Installation [https://pip.pypa.io/en/stable/installing.html]


	Documentation [https://pip.pypa.io/]


	Changelog [https://pip.pypa.io/en/stable/news.html]


	Github Page [https://github.com/pypa/pip]


	Issue Tracking [https://github.com/pypa/pip/issues]


	User mailing list [http://groups.google.com/group/python-virtualenv]


	Dev mailing list [http://groups.google.com/group/pypa-dev]


	User IRC: #pypa on Freenode.


	Dev IRC: #pypa-dev on Freenode.




[image: ../../../../../_images/pip.svg]
 [https://pypi.python.org/pypi/pip][image: ../../../../../_images/master.svg]
 [http://travis-ci.org/pypa/pip][image: ../../../../../_images/pip1.svg]
 [https://ci.appveyor.com/project/pypa/pip/history][image: ../../../../../_images/98a9f7486223ce3cfe5c4cd02f88d0b354d2cf61.svg]
 [https://pip.pypa.io/en/stable]
Code of Conduct

Everyone interacting in the pip project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].







          

      

      

    

  

    
      
          
            
  
pytz - World Timezone Definitions for Python


	Author

	Stuart Bishop <stuart@stuartbishop.net>






Introduction

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight saving time, which you can read more about in the Python
Library Reference (datetime.tzinfo).

Almost all of the Olson timezones are supported.


Note

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the localize() method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
normalize() method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).






Installation

This package can either be installed from a .egg file using setuptools,
or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an
administrative user:

python setup.py install





If you are installing using setuptools, you don’t even need to download
anything as the latest version will be downloaded for you
from the Python package index:

easy_install --upgrade pytz





If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg








Example & Usage


Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'





This library only supports two ways of building a localized time. The
first is to use the localize() method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500





The second way of building a localized time is by converting an existing
localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'





Unfortunately using the tzinfo argument of the standard datetime
constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 LMT+0020'





It is safe for timezones without daylight saving transitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'





The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'





This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the normalize() method to handle daylight saving time
and other timezone transitions. In this example, loc_dt is set
to the instant when daylight saving time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'





Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a tzinfo argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'





Converting between timezones is more easily done, using the
standard astimezone method.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = utc_dt.astimezone(au_tz)
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> utc_dt == utc_dt2
True





You can take shortcuts when dealing with the UTC side of timezone
conversions. normalize() and localize() are not really
necessary when there are no daylight saving time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'








tzinfo API

The tzinfo instances returned by the timezone() function have
been extended to cope with ambiguous times by adding an is_dst
parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')





>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)





The is_dst parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resolve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'





>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'





>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'





>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'





If is_dst is not specified, ambiguous timestamps will raise
an pytz.exceptions.AmbiguousTimeError exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'





>>> import pytz.exceptions
>>> try:
...     tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00










Problems with Localtime

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:



	01:00 EDT occurs


	1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)







In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the ‘US/Eastern’ timezone
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-saving-time transition. Using the
pytz custom syntax, the best you can do is make an educated guess:

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 1, 30, 00))
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'





As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC.  The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances.  The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True





Note that some other timezones are commonly thought of as the same (GMT,
Greenwich, Universal, etc.). The definition of UTC is distinct from these
other timezones, and they are not equivalent. For this reason, they will
not compare the same in Python.

>>> utc == pytz.timezone('GMT')
False





See the section What is UTC, below.

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500





If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Saving
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00





Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
...     print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00





Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True





A special case is where countries change their timezone definitions
with no daylight savings time switch. For example, in 1915 Warsaw
switched from Warsaw time to Central European time with no daylight savings
transition. So at the stroke of midnight on August 5th 1915 the clocks
were wound back 24 minutes creating an ambiguous time period that cannot
be specified without referring to the timezone abbreviation or the
actual UTC offset. In this case midnight happened twice, neither time
during a daylight saving time period. pytz handles this transition by
treating the ambiguous period before the switch as daylight savings
time, and the ambiguous period after as standard time.

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> amb_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=True)
>>> amb_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> amb_dt2 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> amb_dt2.strftime(fmt)
'1915-08-04 23:59:59 CET+0100'
>>> switch_dt = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> switch_dt.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(switch_dt - amb_dt1)
'0:24:01'
>>> str(switch_dt - amb_dt2)
'0:00:01'





The best way of creating a time during an ambiguous time period is
by converting from another timezone such as UTC:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'





The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'





Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'








Country Information

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham





The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand








What is UTC

‘UTC’ is Coordinated Universal Time [https://en.wikipedia.org/wiki/Coordinated_Universal_Time]. It is a successor to, but distinct
from, Greenwich Mean Time (GMT) and the various definitions of Universal
Time. UTC is now the worldwide standard for regulating clocks and time
measurement.

All other timezones are defined relative to UTC, and include offsets like
UTC+0800 - hours to add or subtract from UTC to derive the local time. No
daylight saving time occurs in UTC, making it a useful timezone to perform
date arithmetic without worrying about the confusion and ambiguities caused
by daylight saving time transitions, your country changing its timezone, or
mobile computers that roam through multiple timezones.




Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True





common_timezones is a list of useful, current timezones. It doesn’t
contain deprecated zones or historical zones, except for a few I’ve
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False





Both common_timezones and all_timezones are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True





all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False





You can also retrieve lists of timezones used by particular countries
using the country_timezones() function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich








Internationalization - i18n/l10n

Pytz is an interface to the IANA database, which uses ASCII names. The Unicode  Consortium’s Unicode Locales (CLDR) [http://cldr.unicode.org]
project provides translations. Thomas Khyn’s
l18n [https://pypi.python.org/pypi/l18n] package can be used to access
these translations from Python.




License

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License,  Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other
open source projects.




Latest Versions

This package will be updated after releases of the Olson timezone
database.  The latest version can be downloaded from the Python Package
Index [http://pypi.python.org/pypi/pytz/].  The code that is used
to generate this distribution is hosted on launchpad.net and available
using git:

git clone https://git.launchpad.net/pytz





A mirror on github is also available at https://github.com/stub42/pytz

Announcements of new releases are made on
Launchpad [https://launchpad.net/pytz], and the
Atom feed [http://feeds.launchpad.net/pytz/announcements.atom]
hosted there.




Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad [https://bugs.launchpad.net/pytz].




Issues & Limitations


	Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.


	If you think a timezone definition is incorrect, I probably can’t fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.







Further Reading

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm




Contact

Stuart Bishop <stuart@stuartbishop.net>







          

      

      

    

  

    
      
          
            
  UNKNOWN



          

      

      

    

  

    
      
          
            
  
Requests: HTTP for Humans

[image: ../../../../../_images/requests.svg]
 [https://pypi.python.org/pypi/requests][image: ../../../../../_images/requests1.svg]
 [https://pypi.python.org/pypi/requests][image: ../../../../../_images/requests2.svg]
 [https://pypi.python.org/pypi/requests][image: codecov.io]
 [https://codecov.io/github/requests/requests][image: ../../../../../_images/requests3.svg]
 [https://github.com/requests/requests/graphs/contributors][image: ../../../../../_images/Say%20Thanks-!-1EAEDB.svg]
 [https://saythanks.io/to/kennethreitz]Requests is the only Non-GMO HTTP library for Python, safe for human
consumption.

Warning: Recreational use of the Python standard library for HTTP may result in dangerous side-effects,
including: security vulnerabilities, verbose code, reinventing the wheel,
constantly reading documentation, depression, headaches, or even death.

Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'disk_usage': 368627, u'private_gists': 484, ...}





See the similar code, sans Requests [https://gist.github.com/973705].

[image: https://raw.githubusercontent.com/requests/requests/master/docs/_static/requests-logo-small.png]
 [http://docs.python-requests.org/]Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the
need for manual labor. There’s no need to manually add query strings to your
URLs, or to form-encode your POST data. Keep-alive and HTTP connection pooling
are 100% automatic, thanks to urllib3 [https://github.com/shazow/urllib3].

Besides, all the cool kids are doing it. Requests is one of the most
downloaded Python packages of all time, pulling in over 11,000,000 downloads
every month. You don’t want to be left out!


Feature Support

Requests is ready for today’s web.


	International Domains and URLs


	Keep-Alive & Connection Pooling


	Sessions with Cookie Persistence


	Browser-style SSL Verification


	Basic/Digest Authentication


	Elegant Key/Value Cookies


	Automatic Decompression


	Automatic Content Decoding


	Unicode Response Bodies


	Multipart File Uploads


	HTTP(S) Proxy Support


	Connection Timeouts


	Streaming Downloads


	.netrc Support


	Chunked Requests




Requests officially supports Python 2.6–2.7 & 3.3–3.7, and runs great on PyPy.




Installation

To install Requests, simply:

$ pip install requests
✨🍰✨





Satisfaction guaranteed.




Documentation

Fantastic documentation is available at http://docs.python-requests.org/, for a limited time only.




How to Contribute


	Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a Contributor Friendly [https://github.com/requests/requests/issues?direction=desc&labels=Contributor+Friendly&page=1&sort=updated&state=open] tag for issues that should be ideal for people who are not very familiar with the codebase yet.


	Fork the repository [http://github.com/requests/requests] on GitHub to start making your changes to the master branch (or branch off of it).


	Write a test which shows that the bug was fixed or that the feature works as expected.


	Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to AUTHORS [https://github.com/requests/requests/blob/master/AUTHORS.rst].







Release History


2.18.4 (2017-08-15)

Improvements


	Error messages for invalid headers now include the header name for easier debugging




Dependencies


	We now support idna v2.6.







2.18.3 (2017-08-02)

Improvements


	Running $ python -m requests.help now includes the installed version of idna.




Bugfixes


	Fixed issue where Requests would raise ConnectionError instead of
SSLError when encountering SSL problems when using urllib3 v1.22.







2.18.2 (2017-07-25)

Bugfixes


	requests.help no longer fails on Python 2.6 due to the absence of
ssl.OPENSSL_VERSION_NUMBER.




Dependencies


	We now support urllib3 v1.22.







2.18.1 (2017-06-14)

Bugfixes


	Fix an error in the packaging whereby the *.whl contained incorrect data that
regressed the fix in v2.17.3.







2.18.0 (2017-06-14)

Improvements


	Response is now a context manager, so can be used directly in a with statement
without first having to be wrapped by contextlib.closing().




Bugfixes


	Resolve installation failure if multiprocessing is not available


	Resolve tests crash if multiprocessing is not able to determine the number of CPU cores


	Resolve error swallowing in utils set_environ generator







2.17.3 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.2 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.1 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.0 (2017-05-29)

Improvements


	Removal of the 301 redirect cache. This improves thread-safety.







2.16.5 (2017-05-28)


	Improvements to $ python -m requests.help.







2.16.4 (2017-05-27)


	Introduction of the $ python -m requests.help command, for debugging with maintainers!







2.16.3 (2017-05-27)


	Further restored the requests.packages namespace for compatibility reasons.







2.16.2 (2017-05-27)


	Further restored the requests.packages namespace for compatibility reasons.




No code modification (noted below) should be neccessary any longer.




2.16.1 (2017-05-27)


	Restored the requests.packages namespace for compatibility reasons.


	Bugfix for urllib3 version parsing.




Note: code that was written to import against the requests.packages
namespace previously will have to import code that rests at this module-level
now.

For example:

from requests.packages.urllib3.poolmanager import PoolManager





Will need to be re-written to be:

from requests.packages import urllib3
urllib3.poolmanager.PoolManager





Or, even better:

from urllib3.poolmanager import PoolManager








2.16.0 (2017-05-26)


	Unvendor ALL the things!







2.15.1 (2017-05-26)


	Everyone makes mistakes.







2.15.0 (2017-05-26)

Improvements


	Introduction of the Response.next property, for getting the next
PreparedResponse from a redirect chain (when allow_redirects=False).


	Internal refactoring of __version__ module.




Bugfixes


	Restored once-optional parameter for requests.utils.get_environ_proxies().







2.14.2 (2017-05-10)

Bugfixes


	Changed a less-than to an equal-to and an or in the dependency markers to
widen compatibility with older setuptools releases.







2.14.1 (2017-05-09)

Bugfixes


	Changed the dependency markers to widen compatibility with older pip
releases.







2.14.0 (2017-05-09)

Improvements


	It is now possible to pass no_proxy as a key to the proxies
dictionary to provide handling similar to the NO_PROXY environment
variable.


	When users provide invalid paths to certificate bundle files or directories
Requests now raises IOError, rather than failing at the time of the HTTPS
request with a fairly inscrutable certificate validation error.


	The behavior of SessionRedirectMixin was slightly altered.
resolve_redirects will now detect a redirect by calling
get_redirect_target(response) instead of directly
querying Response.is_redirect and Response.headers['location'].
Advanced users will be able to process malformed redirects more easily.


	Changed the internal calculation of elapsed request time to have higher
resolution on Windows.


	Added win_inet_pton as conditional dependency for the [socks] extra
on Windows with Python 2.7.


	Changed the proxy bypass implementation on Windows: the proxy bypass
check doesn’t use forward and reverse DNS requests anymore


	URLs with schemes that begin with http but are not http or https
no longer have their host parts forced to lowercase.




Bugfixes


	Much improved handling of non-ASCII Location header values in redirects.
Fewer UnicodeDecodeErrors are encountered on Python 2, and Python 3 now
correctly understands that Latin-1 is unlikely to be the correct encoding.


	If an attempt to seek file to find out its length fails, we now
appropriately handle that by aborting our content-length calculations.


	Restricted HTTPDigestAuth to only respond to auth challenges made on 4XX
responses, rather than to all auth challenges.


	Fixed some code that was firing DeprecationWarning on Python 3.6.


	The dismayed person emoticon (/o\\) no longer has a big head. I’m sure
this is what you were all worrying about most.




Miscellaneous


	Updated bundled urllib3 to v1.21.1.


	Updated bundled chardet to v3.0.2.


	Updated bundled idna to v2.5.


	Updated bundled certifi to 2017.4.17.







2.13.0 (2017-01-24)

Features


	Only load the idna library when we’ve determined we need it. This will
save some memory for users.




Miscellaneous


	Updated bundled urllib3 to 1.20.


	Updated bundled idna to 2.2.







2.12.5 (2017-01-18)

Bugfixes


	Fixed an issue with JSON encoding detection, specifically detecting
big-endian UTF-32 with BOM.







2.12.4 (2016-12-14)

Bugfixes


	Fixed regression from 2.12.2 where non-string types were rejected in the
basic auth parameters. While support for this behaviour has been readded,
the behaviour is deprecated and will be removed in the future.







2.12.3 (2016-12-01)

Bugfixes


	Fixed regression from v2.12.1 for URLs with schemes that begin with “http”.
These URLs have historically been processed as though they were HTTP-schemed
URLs, and so have had parameters added. This was removed in v2.12.2 in an
overzealous attempt to resolve problems with IDNA-encoding those URLs. This
change was reverted: the other fixes for IDNA-encoding have been judged to
be sufficient to return to the behaviour Requests had before v2.12.0.







2.12.2 (2016-11-30)

Bugfixes


	Fixed several issues with IDNA-encoding URLs that are technically invalid but
which are widely accepted. Requests will now attempt to IDNA-encode a URL if
it can but, if it fails, and the host contains only ASCII characters, it will
be passed through optimistically. This will allow users to opt-in to using
IDNA2003 themselves if they want to, and will also allow technically invalid
but still common hostnames.


	Fixed an issue where URLs with leading whitespace would raise
InvalidSchema errors.


	Fixed an issue where some URLs without the HTTP or HTTPS schemes would still
have HTTP URL preparation applied to them.


	Fixed an issue where Unicode strings could not be used in basic auth.


	Fixed an issue encountered by some Requests plugins where constructing a
Response object would cause Response.content to raise an
AttributeError.







2.12.1 (2016-11-16)

Bugfixes


	Updated setuptools ‘security’ extra for the new PyOpenSSL backend in urllib3.




Miscellaneous


	Updated bundled urllib3 to 1.19.1.







2.12.0 (2016-11-15)

Improvements


	Updated support for internationalized domain names from IDNA2003 to IDNA2008.
This updated support is required for several forms of IDNs and is mandatory
for .de domains.


	Much improved heuristics for guessing content lengths: Requests will no
longer read an entire StringIO into memory.


	Much improved logic for recalculating Content-Length headers for
PreparedRequest objects.


	Improved tolerance for file-like objects that have no tell method but
do have a seek method.


	Anything that is a subclass of Mapping is now treated like a dictionary
by the data= keyword argument.


	Requests now tolerates empty passwords in proxy credentials, rather than
stripping the credentials.


	If a request is made with a file-like object as the body and that request is
redirected with a 307 or 308 status code, Requests will now attempt to
rewind the body object so it can be replayed.




Bugfixes


	When calling response.close, the call to close will be propagated
through to non-urllib3 backends.


	Fixed issue where the ALL_PROXY environment variable would be preferred
over scheme-specific variables like HTTP_PROXY.


	Fixed issue where non-UTF8 reason phrases got severely mangled by falling
back to decoding using ISO 8859-1 instead.


	Fixed a bug where Requests would not correctly correlate cookies set when
using custom Host headers if those Host headers did not use the native
string type for the platform.




Miscellaneous


	Updated bundled urllib3 to 1.19.


	Updated bundled certifi certs to 2016.09.26.







2.11.1 (2016-08-17)

Bugfixes


	Fixed a bug when using iter_content with decode_unicode=True for
streamed bodies would raise AttributeError. This bug was introduced in
2.11.


	Strip Content-Type and Transfer-Encoding headers from the header block when
following a redirect that transforms the verb from POST/PUT to GET.







2.11.0 (2016-08-08)

Improvements


	Added support for the ALL_PROXY environment variable.


	Reject header values that contain leading whitespace or newline characters to
reduce risk of header smuggling.




Bugfixes


	Fixed occasional TypeError when attempting to decode a JSON response that
occurred in an error case. Now correctly returns a ValueError.


	Requests would incorrectly ignore a non-CIDR IP address in the NO_PROXY
environment variables: Requests now treats it as a specific IP.


	Fixed a bug when sending JSON data that could cause us to encounter obscure
OpenSSL errors in certain network conditions (yes, really).


	Added type checks to ensure that iter_content only accepts integers and
None for chunk sizes.


	Fixed issue where responses whose body had not been fully consumed would have
the underlying connection closed but not returned to the connection pool,
which could cause Requests to hang in situations where the HTTPAdapter
had been configured to use a blocking connection pool.




Miscellaneous


	Updated bundled urllib3 to 1.16.


	Some previous releases accidentally accepted non-strings as acceptable header values. This release does not.







2.10.0 (2016-04-29)

New Features


	SOCKS Proxy Support! (requires PySocks; $ pip install requests[socks])




Miscellaneous


	Updated bundled urllib3 to 1.15.1.







2.9.2 (2016-04-29)

Improvements


	Change built-in CaseInsensitiveDict (used for headers) to use OrderedDict
as its underlying datastore.




Bugfixes


	Don’t use redirect_cache if allow_redirects=False


	When passed objects that throw exceptions from tell(), send them via
chunked transfer encoding instead of failing.


	Raise a ProxyError for proxy related connection issues.







2.9.1 (2015-12-21)

Bugfixes


	Resolve regression introduced in 2.9.0 that made it impossible to send binary
strings as bodies in Python 3.


	Fixed errors when calculating cookie expiration dates in certain locales.




Miscellaneous


	Updated bundled urllib3 to 1.13.1.







2.9.0 (2015-12-15)

Minor Improvements (Backwards compatible)


	The verify keyword argument now supports being passed a path to a
directory of CA certificates, not just a single-file bundle.


	Warnings are now emitted when sending files opened in text mode.


	Added the 511 Network Authentication Required status code to the status code
registry.




Bugfixes


	For file-like objects that are not seeked to the very beginning, we now
send the content length for the number of bytes we will actually read, rather
than the total size of the file, allowing partial file uploads.


	When uploading file-like objects, if they are empty or have no obvious
content length we set Transfer-Encoding: chunked rather than
Content-Length: 0.


	We correctly receive the response in buffered mode when uploading chunked
bodies.


	We now handle being passed a query string as a bytestring on Python 3, by
decoding it as UTF-8.


	Sessions are now closed in all cases (exceptional and not) when using the
functional API rather than leaking and waiting for the garbage collector to
clean them up.


	Correctly handle digest auth headers with a malformed qop directive that
contains no token, by treating it the same as if no qop directive was
provided at all.


	Minor performance improvements when removing specific cookies by name.




Miscellaneous


	Updated urllib3 to 1.13.







2.8.1 (2015-10-13)

Bugfixes


	Update certificate bundle to match certifi 2015.9.6.2’s weak certificate
bundle.


	Fix a bug in 2.8.0 where requests would raise ConnectTimeout instead of
ConnectionError


	When using the PreparedRequest flow, requests will now correctly respect the
json parameter. Broken in 2.8.0.


	When using the PreparedRequest flow, requests will now correctly handle a
Unicode-string method name on Python 2. Broken in 2.8.0.







2.8.0 (2015-10-05)

Minor Improvements (Backwards Compatible)


	Requests now supports per-host proxies. This allows the proxies
dictionary to have entries of the form
{'<scheme>://<hostname>': '<proxy>'}. Host-specific proxies will be used
in preference to the previously-supported scheme-specific ones, but the
previous syntax will continue to work.


	Response.raise_for_status now prints the URL that failed as part of the
exception message.


	requests.utils.get_netrc_auth now takes an raise_errors kwarg,
defaulting to False. When True, errors parsing .netrc files cause
exceptions to be thrown.


	Change to bundled projects import logic to make it easier to unbundle
requests downstream.


	Changed the default User-Agent string to avoid leaking data on Linux: now
contains only the requests version.




Bugfixes


	The json parameter to post() and friends will now only be used if
neither data nor files are present, consistent with the
documentation.


	We now ignore empty fields in the NO_PROXY environment variable.


	Fixed problem where httplib.BadStatusLine would get raised if combining
stream=True with contextlib.closing.


	Prevented bugs where we would attempt to return the same connection back to
the connection pool twice when sending a Chunked body.


	Miscellaneous minor internal changes.


	Digest Auth support is now thread safe.




Updates


	Updated urllib3 to 1.12.







2.7.0 (2015-05-03)

This is the first release that follows our new release process. For more, see
our documentation [http://docs.python-requests.org/en/latest/community/release-process/].

Bugfixes


	Updated urllib3 to 1.10.4, resolving several bugs involving chunked transfer
encoding and response framing.







2.6.2 (2015-04-23)

Bugfixes


	Fix regression where compressed data that was sent as chunked data was not
properly decompressed. (#2561)







2.6.1 (2015-04-22)

Bugfixes


	Remove VendorAlias import machinery introduced in v2.5.2.


	Simplify the PreparedRequest.prepare API: We no longer require the user to
pass an empty list to the hooks keyword argument. (c.f. #2552)


	Resolve redirects now receives and forwards all of the original arguments to
the adapter. (#2503)


	Handle UnicodeDecodeErrors when trying to deal with a unicode URL that
cannot be encoded in ASCII. (#2540)


	Populate the parsed path of the URI field when performing Digest
Authentication. (#2426)


	Copy a PreparedRequest’s CookieJar more reliably when it is not an instance
of RequestsCookieJar. (#2527)







2.6.0 (2015-03-14)

Bugfixes


	CVE-2015-2296: Fix handling of cookies on redirect. Previously a cookie
without a host value set would use the hostname for the redirected URL
exposing requests users to session fixation attacks and potentially cookie
stealing. This was disclosed privately by Matthew Daley of
BugFuzz [https://bugfuzz.com]. This affects all versions of requests from
v2.1.0 to v2.5.3 (inclusive on both ends).


	Fix error when requests is an install_requires dependency and python
setup.py test is run. (#2462)


	Fix error when urllib3 is unbundled and requests continues to use the
vendored import location.


	Include fixes to urllib3’s header handling.


	Requests’ handling of unvendored dependencies is now more restrictive.




Features and Improvements


	Support bytearrays when passed as parameters in the files argument.
(#2468)


	Avoid data duplication when creating a request with str, bytes, or
bytearray input to the files argument.







2.5.3 (2015-02-24)

Bugfixes


	Revert changes to our vendored certificate bundle. For more context see
(#2455, #2456, and http://bugs.python.org/issue23476)







2.5.2 (2015-02-23)

Features and Improvements


	Add sha256 fingerprint support. (shazow/urllib3#540 [https://github.com/shazow/urllib3/pull/540])


	Improve the performance of headers. (shazow/urllib3#544 [https://github.com/shazow/urllib3/pull/544])




Bugfixes


	Copy pip’s import machinery. When downstream redistributors remove
requests.packages.urllib3 the import machinery will continue to let those
same symbols work. Example usage in requests’ documentation and 3rd-party
libraries relying on the vendored copies of urllib3 will work without having
to fallback to the system urllib3.


	Attempt to quote parts of the URL on redirect if unquoting and then quoting
fails. (#2356)


	Fix filename type check for multipart form-data uploads. (#2411)


	Properly handle the case where a server issuing digest authentication
challenges provides both auth and auth-int qop-values. (#2408)


	Fix a socket leak. (shazow/urllib3#549 [https://github.com/shazow/urllib3/pull/549])


	Fix multiple Set-Cookie headers properly. (shazow/urllib3#534 [https://github.com/shazow/urllib3/pull/534])


	Disable the built-in hostname verification. (shazow/urllib3#526 [https://github.com/shazow/urllib3/pull/526])


	Fix the behaviour of decoding an exhausted stream. (shazow/urllib3#535 [https://github.com/shazow/urllib3/pull/535])




Security


	Pulled in an updated cacert.pem.


	Drop RC4 from the default cipher list. (shazow/urllib3#551 [https://github.com/shazow/urllib3/pull/551])







2.5.1 (2014-12-23)

Behavioural Changes


	Only catch HTTPErrors in raise_for_status (#2382)




Bugfixes


	Handle LocationParseError from urllib3 (#2344)


	Handle file-like object filenames that are not strings (#2379)


	Unbreak HTTPDigestAuth handler. Allow new nonces to be negotiated (#2389)







2.5.0 (2014-12-01)

Improvements


	Allow usage of urllib3’s Retry object with HTTPAdapters (#2216)


	The iter_lines method on a response now accepts a delimiter with which
to split the content (#2295)




Behavioural Changes


	Add deprecation warnings to functions in requests.utils that will be removed
in 3.0 (#2309)


	Sessions used by the functional API are always closed (#2326)


	Restrict requests to HTTP/1.1 and HTTP/1.0 (stop accepting HTTP/0.9) (#2323)




Bugfixes


	Only parse the URL once (#2353)


	Allow Content-Length header to always be overridden (#2332)


	Properly handle files in HTTPDigestAuth (#2333)


	Cap redirect_cache size to prevent memory abuse (#2299)


	Fix HTTPDigestAuth handling of redirects after authenticating successfully
(#2253)


	Fix crash with custom method parameter to Session.request (#2317)


	Fix how Link headers are parsed using the regular expression library (#2271)




Documentation


	Add more references for interlinking (#2348)


	Update CSS for theme (#2290)


	Update width of buttons and sidebar (#2289)


	Replace references of Gittip with Gratipay (#2282)


	Add link to changelog in sidebar (#2273)







2.4.3 (2014-10-06)

Bugfixes


	Unicode URL improvements for Python 2.


	Re-order JSON param for backwards compat.


	Automatically defrag authentication schemes from host/pass URIs. (#2249 [https://github.com/requests/requests/issues/2249])







2.4.2 (2014-10-05)

Improvements


	FINALLY! Add json parameter for uploads! (#2258 [https://github.com/requests/requests/pull/2258])


	Support for bytestring URLs on Python 3.x (#2238 [https://github.com/requests/requests/pull/2238])




Bugfixes


	Avoid getting stuck in a loop (#2244 [https://github.com/requests/requests/pull/2244])


	Multiple calls to iter* fail with unhelpful error. (#2240 [https://github.com/requests/requests/issues/2240], #2241 [https://github.com/requests/requests/issues/2241])




Documentation


	Correct redirection introduction (#2245 [https://github.com/requests/requests/pull/2245/])


	Added example of how to send multiple files in one request. (#2227 [https://github.com/requests/requests/pull/2227/])


	Clarify how to pass a custom set of CAs (#2248 [https://github.com/requests/requests/pull/2248/])







2.4.1 (2014-09-09)


	Now has a “security” package extras set, $ pip install requests[security]


	Requests will now use Certifi if it is available.


	Capture and re-raise urllib3 ProtocolError


	Bugfix for responses that attempt to redirect to themselves forever (wtf?).







2.4.0 (2014-08-29)

Behavioral Changes


	Connection: keep-alive header is now sent automatically.




Improvements


	Support for connect timeouts! Timeout now accepts a tuple (connect, read) which is used to set individual connect and read timeouts.


	Allow copying of PreparedRequests without headers/cookies.


	Updated bundled urllib3 version.


	Refactored settings loading from environment – new Session.merge_environment_settings.


	Handle socket errors in iter_content.







2.3.0 (2014-05-16)

API Changes


	New Response property is_redirect, which is true when the
library could have processed this response as a redirection (whether
or not it actually did).


	The timeout parameter now affects requests with both stream=True and
stream=False equally.


	The change in v2.0.0 to mandate explicit proxy schemes has been reverted.
Proxy schemes now default to http://.


	The CaseInsensitiveDict used for HTTP headers now behaves like a normal
dictionary when references as string or viewed in the interpreter.




Bugfixes


	No longer expose Authorization or Proxy-Authorization headers on redirect.
Fix CVE-2014-1829 and CVE-2014-1830 respectively.


	Authorization is re-evaluated each redirect.


	On redirect, pass url as native strings.


	Fall-back to autodetected encoding for JSON when Unicode detection fails.


	Headers set to None on the Session are now correctly not sent.


	Correctly honor decode_unicode even if it wasn’t used earlier in the same
response.


	Stop advertising compress as a supported Content-Encoding.


	The Response.history parameter is now always a list.


	Many, many urllib3 bugfixes.







2.2.1 (2014-01-23)

Bugfixes


	Fixes incorrect parsing of proxy credentials that contain a literal or encoded ‘#’ character.


	Assorted urllib3 fixes.







2.2.0 (2014-01-09)

API Changes


	New exception: ContentDecodingError. Raised instead of urllib3
DecodeError exceptions.




Bugfixes


	Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.


	Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without a home directory.


	Use the correct pool size for pools of connections to proxies.


	Fix iteration of CookieJar objects.


	Ensure that cookies are persisted over redirect.


	Switch back to using chardet, since it has merged with charade.







2.1.0 (2013-12-05)


	Updated CA Bundle, of course.


	Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted to the Session.


	Clean up connections when we hit problems during chunked upload, rather than leaking them.


	Return connections to the pool when a chunked upload is successful, rather than leaking it.


	Match the HTTPbis recommendation for HTTP 301 redirects.


	Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.


	Values of headers set by Requests are now always the native string type.


	Fix previously broken SNI support.


	Fix accessing HTTP proxies using proxy authentication.


	Unencode HTTP Basic usernames and passwords extracted from URLs.


	Support for IP address ranges for no_proxy environment variable


	Parse headers correctly when users override the default Host: header.


	Avoid munging the URL in case of case-sensitive servers.


	Looser URL handling for non-HTTP/HTTPS urls.


	Accept unicode methods in Python 2.6 and 2.7.


	More resilient cookie handling.


	Make Response objects pickleable.


	Actually added MD5-sess to Digest Auth instead of pretending to like last time.


	Updated internal urllib3.


	Fixed @Lukasa’s lack of taste.







2.0.1 (2013-10-24)


	Updated included CA Bundle with new mistrusts and automated process for the future


	Added MD5-sess to Digest Auth


	Accept per-file headers in multipart file POST messages.


	Fixed: Don’t send the full URL on CONNECT messages.


	Fixed: Correctly lowercase a redirect scheme.


	Fixed: Cookies not persisted when set via functional API.


	Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.


	Updated internal urllib3 and chardet.







2.0.0 (2013-09-24)

API Changes:


	Keys in the Headers dictionary are now native strings on all Python versions,
i.e. bytestrings on Python 2, unicode on Python 3.


	Proxy URLs now must have an explicit scheme. A MissingSchema exception
will be raised if they don’t.


	Timeouts now apply to read time if Stream=False.


	RequestException is now a subclass of IOError, not RuntimeError.


	Added new method to PreparedRequest objects: PreparedRequest.copy().


	Added new method to Session objects: Session.update_request(). This
method updates a Request object with the data (e.g. cookies) stored on
the Session.


	Added new method to Session objects: Session.prepare_request(). This
method updates and prepares a Request object, and returns the
corresponding PreparedRequest object.


	Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers().
This should not be called directly, but improves the subclass interface.


	httplib.IncompleteRead exceptions caused by incorrect chunked encoding
will now raise a Requests ChunkedEncodingError instead.


	Invalid percent-escape sequences now cause a Requests InvalidURL
exception to be raised.


	HTTP 208 no longer uses reason phrase "im_used". Correctly uses
"already_reported".


	HTTP 226 reason added ("im_used").




Bugfixes:


	Vastly improved proxy support, including the CONNECT verb. Special thanks to
the many contributors who worked towards this improvement.


	Cookies are now properly managed when 401 authentication responses are
received.


	Chunked encoding fixes.


	Support for mixed case schemes.


	Better handling of streaming downloads.


	Retrieve environment proxies from more locations.


	Minor cookies fixes.


	Improved redirect behaviour.


	Improved streaming behaviour, particularly for compressed data.


	Miscellaneous small Python 3 text encoding bugs.


	.netrc no longer overrides explicit auth.


	Cookies set by hooks are now correctly persisted on Sessions.


	Fix problem with cookies that specify port numbers in their host field.


	BytesIO can be used to perform streaming uploads.


	More generous parsing of the no_proxy environment variable.


	Non-string objects can be passed in data values alongside files.







1.2.3 (2013-05-25)


	Simple packaging fix







1.2.2 (2013-05-23)


	Simple packaging fix







1.2.1 (2013-05-20)


	301 and 302 redirects now change the verb to GET for all verbs, not just
POST, improving browser compatibility.


	Python 3.3.2 compatibility


	Always percent-encode location headers


	Fix connection adapter matching to be most-specific first


	new argument to the default connection adapter for passing a block argument


	prevent a KeyError when there’s no link headers







1.2.0 (2013-03-31)


	Fixed cookies on sessions and on requests


	Significantly change how hooks are dispatched - hooks now receive all the
arguments specified by the user when making a request so hooks can make a
secondary request with the same parameters. This is especially necessary for
authentication handler authors


	certifi support was removed


	Fixed bug where using OAuth 1 with body signature_type sent no data


	Major proxy work thanks to @Lukasa including parsing of proxy authentication
from the proxy url


	Fix DigestAuth handling too many 401s


	Update vendored urllib3 to include SSL bug fixes


	Allow keyword arguments to be passed to json.loads() via the
Response.json() method


	Don’t send Content-Length header by default on GET or HEAD
requests


	Add elapsed attribute to Response objects to time how long a request
took.


	Fix RequestsCookieJar


	Sessions and Adapters are now picklable, i.e., can be used with the
multiprocessing library


	Update charade to version 1.0.3




The change in how hooks are dispatched will likely cause a great deal of
issues.




1.1.0 (2013-01-10)


	CHUNKED REQUESTS


	Support for iterable response bodies


	Assume servers persist redirect params


	Allow explicit content types to be specified for file data


	Make merge_kwargs case-insensitive when looking up keys







1.0.3 (2012-12-18)


	Fix file upload encoding bug


	Fix cookie behavior







1.0.2 (2012-12-17)


	Proxy fix for HTTPAdapter.







1.0.1 (2012-12-17)


	Cert verification exception bug.


	Proxy fix for HTTPAdapter.







1.0.0 (2012-12-17)


	Massive Refactor and Simplification


	Switch to Apache 2.0 license


	Swappable Connection Adapters


	Mountable Connection Adapters


	Mutable ProcessedRequest chain


	/s/prefetch/stream


	Removal of all configuration


	Standard library logging


	Make Response.json() callable, not property.


	Usage of new charade project, which provides python 2 and 3 simultaneous chardet.


	Removal of all hooks except ‘response’


	Removal of all authentication helpers (OAuth, Kerberos)




This is not a backwards compatible change.




0.14.2 (2012-10-27)


	Improved mime-compatible JSON handling


	Proxy fixes


	Path hack fixes


	Case-Insensitive Content-Encoding headers


	Support for CJK parameters in form posts







0.14.1 (2012-10-01)


	Python 3.3 Compatibility


	Simply default accept-encoding


	Bugfixes







0.14.0 (2012-09-02)


	No more iter_content errors if already downloaded.







0.13.9 (2012-08-25)


	Fix for OAuth + POSTs


	Remove exception eating from dispatch_hook


	General bugfixes







0.13.8 (2012-08-21)


	Incredible Link header support :)







0.13.7 (2012-08-19)


	Support for (key, value) lists everywhere.


	Digest Authentication improvements.


	Ensure proxy exclusions work properly.


	Clearer UnicodeError exceptions.


	Automatic casting of URLs to strings (fURL and such)


	Bugfixes.







0.13.6 (2012-08-06)


	Long awaited fix for hanging connections!







0.13.5 (2012-07-27)


	Packaging fix







0.13.4 (2012-07-27)


	GSSAPI/Kerberos authentication!


	App Engine 2.7 Fixes!


	Fix leaking connections (from urllib3 update)


	OAuthlib path hack fix


	OAuthlib URL parameters fix.







0.13.3 (2012-07-12)


	Use simplejson if available.


	Do not hide SSLErrors behind Timeouts.


	Fixed param handling with urls containing fragments.


	Significantly improved information in User Agent.


	client certificates are ignored when verify=False







0.13.2 (2012-06-28)


	Zero dependencies (once again)!


	New: Response.reason


	Sign querystring parameters in OAuth 1.0


	Client certificates no longer ignored when verify=False


	Add openSUSE certificate support







0.13.1 (2012-06-07)


	Allow passing a file or file-like object as data.


	Allow hooks to return responses that indicate errors.


	Fix Response.text and Response.json for body-less responses.







0.13.0 (2012-05-29)


	Removal of Requests.async in favor of grequests [https://github.com/kennethreitz/grequests]


	Allow disabling of cookie persistence.


	New implementation of safe_mode


	cookies.get now supports default argument


	Session cookies not saved when Session.request is called with return_response=False


	Env: no_proxy support.


	RequestsCookieJar improvements.


	Various bug fixes.







0.12.1 (2012-05-08)


	New Response.json property.


	Ability to add string file uploads.


	Fix out-of-range issue with iter_lines.


	Fix iter_content default size.


	Fix POST redirects containing files.







0.12.0 (2012-05-02)


	EXPERIMENTAL OAUTH SUPPORT!


	Proper CookieJar-backed cookies interface with awesome dict-like interface.


	Speed fix for non-iterated content chunks.


	Move pre_request to a more usable place.


	New pre_send hook.


	Lazily encode data, params, files.


	Load system Certificate Bundle if certify isn’t available.


	Cleanups, fixes.







0.11.2 (2012-04-22)


	Attempt to use the OS’s certificate bundle if certifi isn’t available.


	Infinite digest auth redirect fix.


	Multi-part file upload improvements.


	Fix decoding of invalid %encodings in URLs.


	If there is no content in a response don’t throw an error the second time that content is attempted to be read.


	Upload data on redirects.







0.11.1 (2012-03-30)


	POST redirects now break RFC to do what browsers do: Follow up with a GET.


	New strict_mode configuration to disable new redirect behavior.







0.11.0 (2012-03-14)


	Private SSL Certificate support


	Remove select.poll from Gevent monkeypatching


	Remove redundant generator for chunked transfer encoding


	Fix: Response.ok raises Timeout Exception in safe_mode







0.10.8 (2012-03-09)


	Generate chunked ValueError fix


	Proxy configuration by environment variables


	Simplification of iter_lines.


	New trust_env configuration for disabling system/environment hints.


	Suppress cookie errors.







0.10.7 (2012-03-07)


	encode_uri = False







0.10.6 (2012-02-25)


	Allow ‘=’ in cookies.







0.10.5 (2012-02-25)


	Response body with 0 content-length fix.


	New async.imap.


	Don’t fail on netrc.







0.10.4 (2012-02-20)


	Honor netrc.







0.10.3 (2012-02-20)


	HEAD requests don’t follow redirects anymore.


	raise_for_status() doesn’t raise for 3xx anymore.


	Make Session objects picklable.


	ValueError for invalid schema URLs.







0.10.2 (2012-01-15)


	Vastly improved URL quoting.


	Additional allowed cookie key values.


	Attempted fix for “Too many open files” Error


	Replace unicode errors on first pass, no need for second pass.


	Append ‘/’ to bare-domain urls before query insertion.


	Exceptions now inherit from RuntimeError.


	Binary uploads + auth fix.


	Bugfixes.







0.10.1 (2012-01-23)


	PYTHON 3 SUPPORT!


	Dropped 2.5 Support. (Backwards Incompatible)







0.10.0 (2012-01-21)


	Response.content is now bytes-only. (Backwards Incompatible)


	New Response.text is unicode-only.


	If no Response.encoding is specified and chardet is available, Response.text will guess an encoding.


	Default to ISO-8859-1 (Western) encoding for “text” subtypes.


	Removal of decode_unicode. (Backwards Incompatible)


	New multiple-hooks system.


	New Response.register_hook for registering hooks within the pipeline.


	Response.url is now Unicode.







0.9.3 (2012-01-18)


	SSL verify=False bugfix (apparent on windows machines).







0.9.2 (2012-01-18)


	Asynchronous async.send method.


	Support for proper chunk streams with boundaries.


	session argument for Session classes.


	Print entire hook tracebacks, not just exception instance.


	Fix response.iter_lines from pending next line.


	Fix but in HTTP-digest auth w/ URI having query strings.


	Fix in Event Hooks section.


	Urllib3 update.







0.9.1 (2012-01-06)


	danger_mode for automatic Response.raise_for_status()


	Response.iter_lines refactor







0.9.0 (2011-12-28)


	verify ssl is default.







0.8.9 (2011-12-28)


	Packaging fix.







0.8.8 (2011-12-28)


	SSL CERT VERIFICATION!


	Release of Cerifi: Mozilla’s cert list.


	New ‘verify’ argument for SSL requests.


	Urllib3 update.







0.8.7 (2011-12-24)


	iter_lines last-line truncation fix


	Force safe_mode for async requests


	Handle safe_mode exceptions more consistently


	Fix iteration on null responses in safe_mode







0.8.6 (2011-12-18)


	Socket timeout fixes.


	Proxy Authorization support.







0.8.5 (2011-12-14)


	Response.iter_lines!







0.8.4 (2011-12-11)


	Prefetch bugfix.


	Added license to installed version.







0.8.3 (2011-11-27)


	Converted auth system to use simpler callable objects.


	New session parameter to API methods.


	Display full URL while logging.







0.8.2 (2011-11-19)


	New Unicode decoding system, based on over-ridable Response.encoding.


	Proper URL slash-quote handling.


	Cookies with [, ], and _ allowed.







0.8.1 (2011-11-15)


	URL Request path fix


	Proxy fix.


	Timeouts fix.







0.8.0 (2011-11-13)


	Keep-alive support!


	Complete removal of Urllib2


	Complete removal of Poster


	Complete removal of CookieJars


	New ConnectionError raising


	Safe_mode for error catching


	prefetch parameter for request methods


	OPTION method


	Async pool size throttling


	File uploads send real names


	Vendored in urllib3







0.7.6 (2011-11-07)


	Digest authentication bugfix (attach query data to path)







0.7.5 (2011-11-04)


	Response.content = None if there was an invalid response.


	Redirection auth handling.







0.7.4 (2011-10-26)


	Session Hooks fix.







0.7.3 (2011-10-23)


	Digest Auth fix.







0.7.2 (2011-10-23)


	PATCH Fix.







0.7.1 (2011-10-23)


	Move away from urllib2 authentication handling.


	Fully Remove AuthManager, AuthObject, &c.


	New tuple-based auth system with handler callbacks.







0.7.0 (2011-10-22)


	Sessions are now the primary interface.


	Deprecated InvalidMethodException.


	PATCH fix.


	New config system (no more global settings).







0.6.6 (2011-10-19)


	Session parameter bugfix (params merging).







0.6.5 (2011-10-18)


	Offline (fast) test suite.


	Session dictionary argument merging.







0.6.4 (2011-10-13)


	Automatic decoding of unicode, based on HTTP Headers.


	New decode_unicode setting.


	Removal of r.read/close methods.


	New r.faw interface for advanced response usage.*


	Automatic expansion of parameterized headers.







0.6.3 (2011-10-13)


	Beautiful requests.async module, for making async requests w/ gevent.







0.6.2 (2011-10-09)


	GET/HEAD obeys allow_redirects=False.







0.6.1 (2011-08-20)


	Enhanced status codes experience \o/


	Set a maximum number of redirects (settings.max_redirects)


	Full Unicode URL support


	Support for protocol-less redirects.


	Allow for arbitrary request types.


	Bugfixes







0.6.0 (2011-08-17)


	New callback hook system


	New persistent sessions object and context manager


	Transparent Dict-cookie handling


	Status code reference object


	Removed Response.cached


	Added Response.request


	All args are kwargs


	Relative redirect support


	HTTPError handling improvements


	Improved https testing


	Bugfixes







0.5.1 (2011-07-23)


	International Domain Name Support!


	Access headers without fetching entire body (read())


	Use lists as dicts for parameters


	Add Forced Basic Authentication


	Forced Basic is default authentication type


	python-requests.org default User-Agent header


	CaseInsensitiveDict lower-case caching


	Response.history bugfix







0.5.0 (2011-06-21)


	PATCH Support


	Support for Proxies


	HTTPBin Test Suite


	Redirect Fixes


	settings.verbose stream writing


	Querystrings for all methods


	URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicitly raised
r.requests.get('hwe://blah'); r.raise_for_status()







0.4.1 (2011-05-22)


	Improved Redirection Handling


	New ‘allow_redirects’ param for following non-GET/HEAD Redirects


	Settings module refactoring







0.4.0 (2011-05-15)


	Response.history: list of redirected responses


	Case-Insensitive Header Dictionaries!


	Unicode URLs







0.3.4 (2011-05-14)


	Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)


	Internal Refactor


	Bytes data upload Bugfix







0.3.3 (2011-05-12)


	Request timeouts


	Unicode url-encoded data


	Settings context manager and module







0.3.2 (2011-04-15)


	Automatic Decompression of GZip Encoded Content


	AutoAuth Support for Tupled HTTP Auth







0.3.1 (2011-04-01)


	Cookie Changes


	Response.read()


	Poster fix







0.3.0 (2011-02-25)


	Automatic Authentication API Change


	Smarter Query URL Parameterization


	Allow file uploads and POST data together


	
	New Authentication Manager System

	
	Simpler Basic HTTP System


	Supports all build-in urllib2 Auths


	Allows for custom Auth Handlers















0.2.4 (2011-02-19)


	Python 2.5 Support


	PyPy-c v1.4 Support


	Auto-Authentication tests


	Improved Request object constructor







0.2.3 (2011-02-15)


	
	New HTTPHandling Methods

	
	Response.__nonzero__ (false if bad HTTP Status)


	Response.ok (True if expected HTTP Status)


	Response.error (Logged HTTPError if bad HTTP Status)


	Response.raise_for_status() (Raises stored HTTPError)















0.2.2 (2011-02-14)


	Still handles request in the event of an HTTPError. (Issue #2)


	Eventlet and Gevent Monkeypatch support.


	Cookie Support (Issue #1)







0.2.1 (2011-02-14)


	Added file attribute to POST and PUT requests for multipart-encode file uploads.


	Added Request.url attribute for context and redirects







0.2.0 (2011-02-14)


	Birth!







0.0.1 (2011-02-13)


	Frustration


	Conception












          

      

      

    

  

    
      
          
            
  [image: ../../../../../_images/setuptools.svg]
 [https://pypi.org/project/setuptools][image: ../../../../../_images/303a126c2374dbe30d86e477293367df6713fcdd.svg]
 [https://setuptools.readthedocs.io][image: ../../../../../_images/master1.svg]
 [https://travis-ci.org/pypa/setuptools][image: ../../../../../_images/master2.svg]
 [https://ci.appveyor.com/project/jaraco/setuptools/branch/master][image: ../../../../../_images/setuptools1.svg]See the Installation Instructions [https://packaging.python.org/installing/] in the Python Packaging
User’s Guide for instructions on installing, upgrading, and uninstalling
Setuptools.

The project is maintained at GitHub [https://github.com/pypa/setuptools].

Questions and comments should be directed to the distutils-sig
mailing list [http://mail.python.org/pipermail/distutils-sig/].
Bug reports and especially tested patches may be
submitted directly to the bug tracker [https://github.com/pypa/setuptools/issues].


Code of Conduct

Everyone interacting in the setuptools project’s codebases, issue trackers,
chat rooms, and mailing lists is expected to follow the
PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].





          

      

      

    

  

    
      
          
            
  [image: ../../../../../_images/six.svg]
 [https://pypi.python.org/pypi/six][image: ../../../../../_images/six1.svg]
 [https://travis-ci.org/benjaminp/six][image: ../../../../../_images/license-MIT-green.svg]
 [https://github.com/benjaminp/six/blob/master/LICENSE]Six is a Python 2 and 3 compatibility library.  It provides utility functions
for smoothing over the differences between the Python versions with the goal of
writing Python code that is compatible on both Python versions.  See the
documentation for more information on what is provided.

Six supports every Python version since 2.6.  It is contained in only one Python
file, so it can be easily copied into your project. (The copyright and license
notice must be retained.)

Online documentation is at http://six.rtfd.org.

Bugs can be reported to https://github.com/benjaminp/six.  The code can also
be found there.

For questions about six or porting in general, email the python-porting mailing
list: https://mail.python.org/mailman/listinfo/python-porting



          

      

      

    

  

    
      
          
            
  It includes following language algorithms:


	Danish


	Dutch


	English (Standard, Porter)


	Finnish


	French


	German


	Hungarian


	Italian


	Norwegian


	Portuguese


	Romanian


	Russian


	Spanish


	Swedish


	Turkish




This is a pure Python stemming library. If PyStemmer [http://pypi.python.org/pypi/PyStemmer] is available, this module uses
it to accelerate.



          

      

      

    

  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

    
      
          
            
  
Sphinx Bootstrap Theme

This Sphinx [http://sphinx-doc.org/] theme [http://sphinx-doc.org/theming.html] integrates the Bootstrap [http://getbootstrap.com/] CSS / JavaScript
framework with various layout options, hierarchical menu navigation,
and mobile-friendly responsive design. It is configurable, extensible,
and can use any number of different Bootswatch [http://bootswatch.com] CSS themes.


Introduction and Demos

The theme is introduced and discussed in the following posts:


	12/09/2011 - Twitter Bootstrap Theme for Sphinx [http://loose-bits.com/2011/12/09/sphinx-twitter-bootstrap-theme.html]


	11/19/2012 - Sphinx Bootstrap Theme Updates - Mobile, Dropdowns, and More [http://loose-bits.com/2012/11/19/sphinx-bootstrap-theme-updates.html]


	2/12/2013 - Sphinx Bootstrap Theme 0.1.6 - Bootstrap and Other Updates [http://loose-bits.com/2013/02/12/sphinx-bootstrap-theme-updates.html]


	4/10/2013 - Sphinx Bootstrap Theme 0.2.0 - Now with Bootswatch! [http://loose-bits.com/2013/04/10/sphinx-bootstrap-theme-bootswatch.html]


	9/8/2013 - Sphinx Bootstrap Theme 0.3.0 - Bootstrap v3 and more! [http://loose-bits.com/2013/09/08/sphinx-bootstrap-theme-bootstrap-3.html]




Examples of the theme in use for some public projects:


	Sphinx Bootstrap Theme [http://ryan-roemer.github.com/sphinx-bootstrap-theme]: This project, with the theme option
'bootswatch_theme': "sandstone" to use the “Sandstone [http://bootswatch.com/sandstone]” Bootswatch [http://bootswatch.com] theme.


	Django Cloud Browser [http://ryan-roemer.github.com/django-cloud-browser]: A Django reusable app for browsing cloud
datastores (e.g., Amazon Web Services S3).


	C++ Format [http://cppformat.readthedocs.org]: Small, safe and fast formatting library for C++.




The theme demo website also includes an examples page [http://ryan-roemer.github.com/sphinx-bootstrap-theme/examples.html] for some useful
illustrations of getting Sphinx to play nicely with Bootstrap (also take a
look at the examples source [http://ryan-roemer.github.com/sphinx-bootstrap-theme/_sources/examples.txt] for the underlying reStructuredText).




Installation

Installation from PyPI [http://pypi.python.org/pypi/sphinx-bootstrap-theme/] is fairly straightforward:


	Install the package:

$ pip install sphinx_bootstrap_theme







	Edit the “conf.py” configuration file to point to the bootstrap theme:

# At the top.
import sphinx_bootstrap_theme

# ...

# Activate the theme.
html_theme = 'bootstrap'
html_theme_path = sphinx_bootstrap_theme.get_html_theme_path()












Customization

The theme can be customized in varying ways (some a little more work than others).


Theme Options

The theme provides many built-in options that can be configured by editing
your “conf.py” file:

# (Optional) Logo. Should be small enough to fit the navbar (ideally 24x24).
# Path should be relative to the ``_static`` files directory.
html_logo = "my_logo.png"

# Theme options are theme-specific and customize the look and feel of a
# theme further.
html_theme_options = {
    # Navigation bar title. (Default: ``project`` value)
    'navbar_title': "Demo",

    # Tab name for entire site. (Default: "Site")
    'navbar_site_name': "Site",

    # A list of tuples containing pages or urls to link to.
    # Valid tuples should be in the following forms:
    #    (name, page)                 # a link to a page
    #    (name, "/aa/bb", 1)          # a link to an arbitrary relative url
    #    (name, "http://example.com", True) # arbitrary absolute url
    # Note the "1" or "True" value above as the third argument to indicate
    # an arbitrary url.
    'navbar_links': [
        ("Examples", "examples"),
        ("Link", "http://example.com", True),
    ],

    # Render the next and previous page links in navbar. (Default: true)
    'navbar_sidebarrel': True,

    # Render the current pages TOC in the navbar. (Default: true)
    'navbar_pagenav': True,

    # Tab name for the current pages TOC. (Default: "Page")
    'navbar_pagenav_name': "Page",

    # Global TOC depth for "site" navbar tab. (Default: 1)
    # Switching to -1 shows all levels.
    'globaltoc_depth': 2,

    # Include hidden TOCs in Site navbar?
    #
    # Note: If this is "false", you cannot have mixed ``:hidden:`` and
    # non-hidden ``toctree`` directives in the same page, or else the build
    # will break.
    #
    # Values: "true" (default) or "false"
    'globaltoc_includehidden': "true",

    # HTML navbar class (Default: "navbar") to attach to <div> element.
    # For black navbar, do "navbar navbar-inverse"
    'navbar_class': "navbar navbar-inverse",

    # Fix navigation bar to top of page?
    # Values: "true" (default) or "false"
    'navbar_fixed_top': "true",

    # Location of link to source.
    # Options are "nav" (default), "footer" or anything else to exclude.
    'source_link_position': "nav",

    # Bootswatch (http://bootswatch.com/) theme.
    #
    # Options are nothing (default) or the name of a valid theme
    # such as "cosmo" or "sandstone".
    #
    # The set of valid themes depend on the version of Bootstrap
    # that's used (the next config option).
    #
    # Currently, the supported themes are:
    # - Bootstrap 2: https://bootswatch.com/2
    # - Bootstrap 3: https://bootswatch.com/3
    'bootswatch_theme': "united",

    # Choose Bootstrap version.
    # Values: "3" (default) or "2" (in quotes)
    'bootstrap_version': "3",
}





Note for the navigation bar title that if you don’t specify a theme option of
navbar_title that the “conf.py” project string will be used. We don’t
use the html_title or html_short_title values because by default those
both contain version strings, which the navigation bar treats differently.




Bootstrap Versions

The theme supports Bootstrap v2.3.2 and v3.3.7 via the
bootstrap_version theme option (of "2" or "3"). Some notes
regarding version differences:


	Bootstrap 3 has dropped support for sub-menus [http://stackoverflow.com/questions/18023493], so while supported by this
theme, they will not show up in site or page menus.


	Internally, “navbar.html” is the Sphinx template used for Bootstrap v3 and
“navbar-2.html” is the template used for v2.


	If you are unsure what to choose, choose Bootstrap 3.  If you experience some
form of compatibility issues, then try and use Bootstrap 2.







Extending “layout.html”

As a more “hands on” approach to customization, you can override any template
in this Sphinx theme or any others. A good candidate for changes is
“layout.html”, which provides most of the look and feel. First, take a look
at the “layout.html” file that the theme provides, and figure out
what you need to override. As a side note, we have some theme-specific
enhancements, such as the navbarextra template block for additional
content in the navbar.

Then, create your own “_templates” directory and “layout.html” file (assuming
you build from a “source” directory):

$ mkdir source/_templates
$ touch source/_templates/layout.html





Then, configure your “conf.py”:

templates_path = ['_templates']





Finally, edit your override file “source/_templates/layout.html”:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{# Add some extra stuff before and use existing with 'super()' call. #}
{% block footer %}
  <h2>My footer of awesomeness.</h2>
  {{ super() }}
{% endblock %}








Adding Custom CSS

Alternately, you could add your own custom static media directory with a CSS
file to override a style, which in the demo would be something like:

$ mkdir source/_static
$ touch source/_static/my-styles.css





In the new file “source/_static/my-styles.css”, add any appropriate styling,
e.g. a bold background color:

footer {
  background-color: red;
}





Then, in “conf.py”, edit this line:

html_static_path = ["_static"]





From there it depends on which version of Sphinx you are using:

Sphinx <= 1.5

You will need the override template “source/_templates/layout.html” file
configured as above, but with the following code:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{# Custom CSS overrides #}
{% set css_files = css_files + ['_static/my-styles.css'] %}






Note

See Issue #159 [https://github.com/ryan-roemer/sphinx-bootstrap-theme/pull/159]
for more information.



Sphinx >= 1.6.1

Add a setup function in “conf.py” with stylesheet paths added relative to the
static path:

def setup(app):
    app.add_stylesheet("my-styles.css") # also can be a full URL
    # app.add_stylesheet("ANOTHER.css")
    # app.add_stylesheet("AND_ANOTHER.css")






Tip

Sphinx automatically calls your setup function defined in “conf.py” during
the build process for you.  There is no need to, nor should you, call this
function directly in your code.








Theme Notes


Sphinx

The theme places the global TOC, local TOC, navigation (prev, next) and
source links all in the top Bootstrap navigation bar, along with the Sphinx
search bar on the left side.

The global (site-wide) table of contents is the “Site” navigation dropdown,
which is a configurable level rendering of the toctree for the entire site.
The local (page-level) table of contents is the “Page” navigation dropdown,
which is a multi-level rendering of the current page’s toc.




Bootstrap

The theme offers Bootstrap v2.x and v3.x, both of which rely on
jQuery v.1.9.x. As the jQuery that Bootstrap wants can radically depart from
the jQuery Sphinx internal libraries use, the library from this theme is
integrated via noConflict() as $jqTheme.

You can override any static JS/CSS files by dropping different versions in your
Sphinx “_static” directory.






Contributing

Contributions to this project are most welcome. Please make sure that the demo
site builds cleanly, and looks like what you want. First build the demo:

$ fab clean && fab demo





Then, view the site in the development server:

$ fab demo_server





Also, if you are adding a new type of styling or Sphinx or Bootstrap construct,
please add a usage example to the “Examples” page.

Note: If you are in Python 3, Fabric isn’t available, so we have a very
rough Makefile in its place. Try:

$ make clean && make demo





Then, view the site in the development server:

$ make demo_server








Licenses

Sphinx Bootstrap Theme is licensed under the MIT [https://github.com/ryan-roemer/sphinx-bootstrap-theme/blob/master/LICENSE.txt] license.

Bootstrap v2 [https://github.com/twbs/bootstrap/blob/v2.3.2/LICENSE] is licensed under the Apache license 2.0.

Bootstrap v3.1.0+ [https://github.com/twbs/bootstrap/blob/master/LICENSE] is licensed under the MIT license.







          

      

      

    

  

    
      
          
            
  
Read the Docs Sphinx Theme


Contents


	Read the Docs Sphinx Theme


	Installation


	Via package


	Via git or download






	Configuration


	Project-wide configuration


	Page-level configuration






	Changelog


	master


	v0.2.4


	v0.2.3


	v0.2.2


	v0.2.1


	v0.2.0


	v0.1.10-alpha


	v0.1.9


	v0.1.8






	How the Table of Contents builds


	Contributing or modifying the theme


	Set up your environment


	Before you create an issue


	Before you send a Pull Request






	Using this theme locally, then building on Read the Docs?


	TODO










View a working demo [http://docs.readthedocs.org] over on readthedocs.org [http://www.readthedocs.org].

This is a mobile-friendly sphinx [http://www.sphinx-doc.org] theme I made for readthedocs.org [http://www.readthedocs.org].

If you’d like to update the theme,
please make your edits to the SASS files here,
rather than the .css files on checked into the repo.

[image: buildenv/lib/python3.5/site-packages/sphinx_rtd_theme-0.2.4.dist-info/screen_mobile.png]

Installation


Via package

Download the package or add it to your requirements.txt file:

$ pip install sphinx_rtd_theme





In your conf.py file:

import sphinx_rtd_theme

html_theme = "sphinx_rtd_theme"

html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]





You may also specify a canonical url in conf.py to let search engines know
they should give higher ranking to latest version of the docs:

html_theme_options['canonical_url'] = 'http://domain.tld/latest/docs/'





The url points to the root of the documentation. It requires a trailing slash.




Via git or download

Symlink or subtree the sphinx_rtd_theme/sphinx_rtd_theme repository into your documentation at
docs/_themes/sphinx_rtd_theme then add the following two settings to your Sphinx
conf.py file:

html_theme = "sphinx_rtd_theme"
html_theme_path = ["_themes", ]










Configuration

You can configure different parts of the theme.


Project-wide configuration

The theme’s project-wide options are defined in the sphinx_rtd_theme/theme.conf
file of this repository, and can be defined in your project’s conf.py via
html_theme_options. For example:

html_theme_options = {
    'collapse_navigation': False,
    'display_version': False,
    'navigation_depth': 3,
}








Page-level configuration

Pages support metadata that changes how the theme renders.
You can currently add the following:


	:github_url: This will force the “Edit on GitHub” to the configured URL


	:bitbucket_url: This will force the “Edit on Bitbucket” to the configured URL


	:gitlab_url: This will force the “Edit on GitLab” to the configured URL









Changelog


master




v0.2.4


	Yet another patch to deal with extra builders outside Spinx, such as the
singlehtml builders from the Read the Docs Sphinx extension







v0.2.3


	Temporarily patch Sphinx issue with singlehtml builder by inspecting the
builder in template.







v0.2.2


	Roll back toctree fix in 0.2.1 (#367). This didn’t fix the issue and
introduced another bug with toctrees display.







v0.2.1


	Add the rel HTML attribute to the footer links which point to
the previous and next pages.


	Fix toctree issue caused by Sphinx singlehtml builder (#367)







v0.2.0


	Adds the comments block after the body block in the template


	Added “Edit on GitLab” support


	Many bug fixes







v0.1.10-alpha


Note

This is a pre-release version




	Removes Sphinx dependency


	Fixes hamburger on mobile display


	Adds a body_begin block to the template


	Add prev_next_buttons_location which can take the value bottom,
top, both , None and will display the “Next” and “Previous”
buttons accordingly







v0.1.9


	Intermittent scrollbar visibility bug fixed. This change introduces a
backwards incompatible change to the theme’s layout HTML. This should only be
a problem for derivative themes that have overridden styling of nav elements
using direct decendant selectors. See #215 [https://github.com/snide/sphinx_rtd_theme/pull/215] for more information.


	Safari overscroll bug fixed


	Version added to the nav header


	Revision id was added to the documentation footer if you are using RTD


	An extra block, extrafooter was added to allow extra content in the
document footer block


	Fixed modernizr URL


	Small display style changes on code blocks, figure captions, and nav elements







v0.1.8


	Start keeping changelog :)


	Support for third and fourth level headers in the sidebar


	Add support for Sphinx 1.3


	Add sidebar headers for :caption: in Sphinx toctree


	Clean up sidebar scrolling behavior so it never scrolls out of view









How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set the theme reverts to sphinx’s usual local toctree.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Also note that the table of contents is set with includehidden=true. This allows you
to set a hidden toc in your index file with the hidden [http://sphinx-doc.org/markup/toctree.html] property that will allow you
to build a toc without it rendering in your index.

By default, the navigation will “stick” to the screen as you scroll. However if your toc
is vertically too large, it will revert to static positioning. To disable the sticky nav
altogether change the setting in conf.py.




Contributing or modifying the theme

The sphinx_rtd_theme is primarily a sass [http://www.sass-lang.com] project that requires a few other sass libraries. I’m
using bower [http://www.bower.io] to manage these dependencies and sass [http://www.sass-lang.com] to build the css. The good news is
I have a very nice set of grunt [http://www.gruntjs.com] operations that will not only load these dependencies, but watch
for changes, rebuild the sphinx demo docs and build a distributable version of the theme.
The bad news is this means you’ll need to set up your environment similar to that
of a front-end developer (vs. that of a python developer). That means installing node and ruby.


Set up your environment


	Install sphinx [http://www.sphinx-doc.org] into a virtual environment.




pip install sphinx






	Install sass




gem install sass






	Install node, bower and grunt.




// Install node
brew install node

// Install bower and grunt
npm install -g bower grunt-cli

// Now that everything is installed, let's install the theme dependecies.
npm install





Now that our environment is set up, make sure you’re in your virtual environment, go to
this repository in your terminal and run grunt:

grunt





This default task will do the following very cool things that make it worth the trouble.


	It’ll install and update any bower dependencies.


	It’ll run sphinx and build new docs.


	It’ll watch for changes to the sass files and build css from the changes.


	It’ll rebuild the sphinx docs anytime it notices a change to .rst, .html, .js
or .css files.







Before you create an issue

I don’t have a lot of time to maintain this project due to other responsibilities.
I know there are a lot of Python engineers out there that can’t code sass / css and
are unable to submit pull requests. That said, submitting random style bugs without
at least providing sample documentation that replicates your problem is a good
way for me to ignore your request. RST unfortunately can spit out a lot of things
in a lot of ways. I don’t have time to research your problem for you, but I do
have time to fix the actual styling issue if you can replicate the problem for me.




Before you send a Pull Request

When you’re done with your edits, you can run grunt build to clean out the old
files and rebuild a new distribution, compressing the css and cleaning out
extraneous files. Please do this before you send in a PR.






Using this theme locally, then building on Read the Docs?

Currently if you import sphinx_rtd_theme in your local sphinx build, then pass
that same config to Read the Docs, it will fail, since RTD gets confused. If
you want to run this theme locally and then also have it build on RTD, then
you can add something like this to your config. Thanks to Daniel Oaks for this.

# on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd:  # only import and set the theme if we're building docs locally
    import sphinx_rtd_theme
    html_theme = 'sphinx_rtd_theme'
    html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

# otherwise, readthedocs.org uses their theme by default, so no need to specify it








TODO


	Separate some sass variables at the theme level so you can overwrite some basic colors.










          

      

      

    

  

    
      
          
            
  
sphinxcontrib-images

sphinxcontrib-images (formerly sphinxcontrib-fancybox [https://pypi.python.org/pypi/sphinxcontrib-fancybox]).

Easy sphinx thumbnails (focused on HTML).


	Documentation [https://pythonhosted.org/sphinxcontrib-images],


	Repository (GitHub) [https://github.com/spinus/sphinxcontrib-images/],


	PyPI [https://pypi.python.org/pypi/sphinxcontrib-images/].


	TravisCI <https://travis-ci.org/spinus/sphinxcontrib-images>

[image: ../../../../../_images/sphinxcontrib-images.svg]
 [https://travis-ci.org/spinus/sphinxcontrib-images]




Features


	Show thumbnails instead of full size images inside documentation (HTML).


	Ability to zoom/enlarge picture using LightBox2 (HTML).


	Ability to group pictures


	Download remote pictures and keep it in cache (if requested)


	Support for other formats (latex, epub, … - fallback to image directive)


	Easy to extend (add own backend in only few lines of code)
* Add other HTML “preview” solution than LightBox2
* Add better support to non-HTML outputs
* Preprocess images





TODO


	Make proper thumbnails (scale down images)









How to install?

Instalation through pip:

pip install sphinxcontrib-images





or through the GitHub:

pip install git+https://github.com/spinus/sphinxcontrib-images





Next, you have to add extension to conf.py in your sphinx project.

extensions = [
          …
          'sphinxcontrib.images',
          …
          ]








How to use it?

Example:

.. thumbnail:: picture.png





You can also override default image directive provided by sphinx.
Check the documentation for all configuration options.




Questions and suggestions

If you have any suggstions, patches, problems - please use
GitHub Issues [https://github.com/spinus/sphinxcontrib-images/issues].







          

      

      

    

  

    
      
          
            
  sphinxcontrib-webuspport provides a Python API to easily integrate Sphinx
documentation into your Web application.



          

      

      

    

  

    
      
          
            
  
urllib3

[image: Build status on Travis]
 [https://travis-ci.org/shazow/urllib3][image: Build status on AppVeyor]
 [https://ci.appveyor.com/project/shazow/urllib3][image: Documentation Status]
 [https://urllib3.readthedocs.io/en/latest/][image: Coverage Status]
 [https://codecov.io/gh/shazow/urllib3][image: PyPI version]
 [https://pypi.python.org/pypi/urllib3][image: Bountysource]
 [https://www.bountysource.com/trackers/192525-urllib3?utm_source=192525&utm_medium=shield&utm_campaign=TRACKER_BADGE]urllib3 is a powerful, sanity-friendly HTTP client for Python. Much of the
Python ecosystem already uses urllib3 and you should too.
urllib3 brings many critical features that are missing from the Python
standard libraries:


	Thread safety.


	Connection pooling.


	Client-side SSL/TLS verification.


	File uploads with multipart encoding.


	Helpers for retrying requests and dealing with HTTP redirects.


	Support for gzip and deflate encoding.


	Proxy support for HTTP and SOCKS.


	100% test coverage.




urllib3 is powerful and easy to use:

>>> import urllib3
>>> http = urllib3.PoolManager()
>>> r = http.request('GET', 'http://httpbin.org/robots.txt')
>>> r.status
200
>>> r.data
'User-agent: *\nDisallow: /deny\n'






Installing

urllib3 can be installed with pip [https://pip.pypa.io]:

$ pip install urllib3





Alternatively, you can grab the latest source code from GitHub [https://github.com/shazow/urllib3]:

$ git clone git://github.com/shazow/urllib3.git
$ python setup.py install








Documentation

urllib3 has usage and reference documentation at urllib3.readthedocs.io [https://urllib3.readthedocs.io].




Contributing

urllib3 happily accepts contributions. Please see our
contributing documentation [https://urllib3.readthedocs.io/en/latest/contributing.html]
for some tips on getting started.




Maintainers


	@lukasa [https://github.com/lukasa] (Cory Benfield)


	@sigmavirus24 [https://github.com/sigmavirus24] (Ian Cordasco)


	@shazow [https://github.com/shazow] (Andrey Petrov)




👋




Sponsorship

If your company benefits from this library, please consider sponsoring its
development [https://urllib3.readthedocs.io/en/latest/contributing.html#sponsorship].






Changes


1.22 (2017-07-20)


	Fixed missing brackets in HTTP CONNECT when connecting to IPv6 address via
IPv6 proxy. (Issue #1222)


	Made the connection pool retry on SSLError.  The original SSLError
is available on MaxRetryError.reason. (Issue #1112)


	Drain and release connection before recursing on retry/redirect.  Fixes
deadlocks with a blocking connectionpool. (Issue #1167)


	Fixed compatibility for cookiejar. (Issue #1229)


	pyopenssl: Use vendored version of six. (Issue #1231)







1.21.1 (2017-05-02)


	Fixed SecureTransport issue that would cause long delays in response body
delivery. (Pull #1154)


	Fixed regression in 1.21 that threw exceptions when users passed the
socket_options flag to the PoolManager.  (Issue #1165)


	Fixed regression in 1.21 that threw exceptions when users passed the
assert_hostname or assert_fingerprint flag to the PoolManager.
(Pull #1157)







1.21 (2017-04-25)


	Improved performance of certain selector system calls on Python 3.5 and
later. (Pull #1095)


	Resolved issue where the PyOpenSSL backend would not wrap SysCallError
exceptions appropriately when sending data. (Pull #1125)


	Selectors now detects a monkey-patched select module after import for modules
that patch the select module like eventlet, greenlet. (Pull #1128)


	Reduced memory consumption when streaming zlib-compressed responses
(as opposed to raw deflate streams). (Pull #1129)


	Connection pools now use the entire request context when constructing the
pool key. (Pull #1016)


	PoolManager.connection_from_* methods now accept a new keyword argument,
pool_kwargs, which are merged with the existing connection_pool_kw.
(Pull #1016)


	Add retry counter for status_forcelist. (Issue #1147)


	Added contrib module for using SecureTransport on macOS:
urllib3.contrib.securetransport.  (Pull #1122)


	urllib3 now only normalizes the case of http:// and https:// schemes:
for schemes it does not recognise, it assumes they are case-sensitive and
leaves them unchanged.
(Issue #1080)







1.20 (2017-01-19)


	Added support for waiting for I/O using selectors other than select,
improving urllib3’s behaviour with large numbers of concurrent connections.
(Pull #1001)


	Updated the date for the system clock check. (Issue #1005)


	ConnectionPools now correctly consider hostnames to be case-insensitive.
(Issue #1032)


	Outdated versions of PyOpenSSL now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Pull #1063)


	Outdated versions of cryptography now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Issue #1044)


	Automatically attempt to rewind a file-like body object when a request is
retried or redirected. (Pull #1039)


	Fix some bugs that occur when modules incautiously patch the queue module.
(Pull #1061)


	Prevent retries from occuring on read timeouts for which the request method
was not in the method whitelist. (Issue #1059)


	Changed the PyOpenSSL contrib module to lazily load idna to avoid
unnecessarily bloating the memory of programs that don’t need it. (Pull
#1076)


	Add support for IPv6 literals with zone identifiers. (Pull #1013)


	Added support for socks5h:// and socks4a:// schemes when working with SOCKS
proxies, and controlled remote DNS appropriately. (Issue #1035)







1.19.1 (2016-11-16)


	Fixed AppEngine import that didn’t function on Python 3.5. (Pull #1025)







1.19 (2016-11-03)


	urllib3 now respects Retry-After headers on 413, 429, and 503 responses when
using the default retry logic. (Pull #955)


	Remove markers from setup.py to assist ancient setuptools versions. (Issue
#986)


	Disallow superscripts and other integerish things in URL ports. (Issue #989)


	Allow urllib3’s HTTPResponse.stream() method to continue to work with
non-httplib underlying FPs. (Pull #990)


	Empty filenames in multipart headers are now emitted as such, rather than
being supressed. (Issue #1015)


	Prefer user-supplied Host headers on chunked uploads. (Issue #1009)







1.18.1 (2016-10-27)


	CVE-2016-9015. Users who are using urllib3 version 1.17 or 1.18 along with
PyOpenSSL injection and OpenSSL 1.1.0 must upgrade to this version. This
release fixes a vulnerability whereby urllib3 in the above configuration
would silently fail to validate TLS certificates due to erroneously setting
invalid flags in OpenSSL’s SSL_CTX_set_verify function. These erroneous
flags do not cause a problem in OpenSSL versions before 1.1.0, which
interprets the presence of any flag as requesting certificate validation.

There is no PR for this patch, as it was prepared for simultaneous disclosure
and release. The master branch received the same fix in PR #1010.








1.18 (2016-09-26)


	Fixed incorrect message for IncompleteRead exception. (PR #973)


	Accept iPAddress subject alternative name fields in TLS certificates.
(Issue #258)


	Fixed consistency of HTTPResponse.closed between Python 2 and 3.
(Issue #977)


	Fixed handling of wildcard certificates when using PyOpenSSL. (Issue #979)







1.17 (2016-09-06)


	Accept SSLContext objects for use in SSL/TLS negotiation. (Issue #835)


	ConnectionPool debug log now includes scheme, host, and port. (Issue #897)


	Substantially refactored documentation. (Issue #887)


	Used URLFetch default timeout on AppEngine, rather than hardcoding our own.
(Issue #858)


	Normalize the scheme and host in the URL parser (Issue #833)


	HTTPResponse contains the last Retry object, which now also
contains retries history. (Issue #848)


	Timeout can no longer be set as boolean, and must be greater than zero.
(PR #924)


	Removed pyasn1 and ndg-httpsclient from dependencies used for PyOpenSSL. We
now use cryptography and idna, both of which are already dependencies of
PyOpenSSL. (PR #930)


	Fixed infinite loop in stream when amt=None. (Issue #928)


	Try to use the operating system’s certificates when we are using an
SSLContext. (PR #941)


	Updated cipher suite list to allow ChaCha20+Poly1305. AES-GCM is preferred to
ChaCha20, but ChaCha20 is then preferred to everything else. (PR #947)


	Updated cipher suite list to remove 3DES-based cipher suites. (PR #958)


	Removed the cipher suite fallback to allow HIGH ciphers. (PR #958)


	Implemented length_remaining to determine remaining content
to be read. (PR #949)


	Implemented enforce_content_length to enable exceptions when
incomplete data chunks are received. (PR #949)


	Dropped connection start, dropped connection reset, redirect, forced retry,
and new HTTPS connection log levels to DEBUG, from INFO. (PR #967)







1.16 (2016-06-11)


	Disable IPv6 DNS when IPv6 connections are not possible. (Issue #840)


	Provide key_fn_by_scheme pool keying mechanism that can be
overridden. (Issue #830)


	Normalize scheme and host to lowercase for pool keys, and include
source_address. (Issue #830)


	Cleaner exception chain in Python 3 for _make_request.
(Issue #861)


	Fixed installing urllib3[socks] extra. (Issue #864)


	Fixed signature of ConnectionPool.close so it can actually safely be
called by subclasses. (Issue #873)


	Retain release_conn state across retries. (Issues #651, #866)


	Add customizable HTTPConnectionPool.ResponseCls, which defaults to
HTTPResponse but can be replaced with a subclass. (Issue #879)







1.15.1 (2016-04-11)


	Fix packaging to include backports module. (Issue #841)







1.15 (2016-04-06)


	Added Retry(raise_on_status=False). (Issue #720)


	Always use setuptools, no more distutils fallback. (Issue #785)


	Dropped support for Python 3.2. (Issue #786)


	Chunked transfer encoding when requesting with chunked=True.
(Issue #790)


	Fixed regression with IPv6 port parsing. (Issue #801)


	Append SNIMissingWarning messages to allow users to specify it in
the PYTHONWARNINGS environment variable. (Issue #816)


	Handle unicode headers in Py2. (Issue #818)


	Log certificate when there is a hostname mismatch. (Issue #820)


	Preserve order of request/response headers. (Issue #821)







1.14 (2015-12-29)


	contrib: SOCKS proxy support! (Issue #762)


	Fixed AppEngine handling of transfer-encoding header and bug
in Timeout defaults checking. (Issue #763)







1.13.1 (2015-12-18)


	Fixed regression in IPv6 + SSL for match_hostname. (Issue #761)







1.13 (2015-12-14)


	Fixed pip install urllib3[secure] on modern pip. (Issue #706)


	pyopenssl: Fixed SSL3_WRITE_PENDING error. (Issue #717)


	pyopenssl: Support for TLSv1.1 and TLSv1.2. (Issue #696)


	Close connections more defensively on exception. (Issue #734)


	Adjusted read_chunked to handle gzipped, chunk-encoded bodies without
repeatedly flushing the decoder, to function better on Jython. (Issue #743)


	Accept ca_cert_dir for SSL-related PoolManager configuration. (Issue #758)







1.12 (2015-09-03)


	Rely on six for importing httplib to work around
conflicts with other Python 3 shims. (Issue #688)


	Add support for directories of certificate authorities, as supported by
OpenSSL. (Issue #701)


	New exception: NewConnectionError, raised when we fail to establish
a new connection, usually ECONNREFUSED socket error.







1.11 (2015-07-21)


	When ca_certs is given, cert_reqs defaults to
'CERT_REQUIRED'. (Issue #650)


	pip install urllib3[secure] will install Certifi and
PyOpenSSL as dependencies. (Issue #678)


	Made HTTPHeaderDict usable as a headers input value
(Issues #632, #679)


	Added urllib3.contrib.appengine [https://urllib3.readthedocs.io/en/latest/contrib.html#google-app-engine]
which has an AppEngineManager for using URLFetch in a
Google AppEngine environment. (Issue #664)


	Dev: Added test suite for AppEngine. (Issue #631)


	Fix performance regression when using PyOpenSSL. (Issue #626)


	Passing incorrect scheme (e.g. foo://) will raise
ValueError instead of AssertionError (backwards
compatible for now, but please migrate). (Issue #640)


	Fix pools not getting replenished when an error occurs during a
request using release_conn=False. (Issue #644)


	Fix pool-default headers not applying for url-encoded requests
like GET. (Issue #657)


	log.warning in Python 3 when headers are skipped due to parsing
errors. (Issue #642)


	Close and discard connections if an error occurs during read.
(Issue #660)


	Fix host parsing for IPv6 proxies. (Issue #668)


	Separate warning type SubjectAltNameWarning, now issued once
per host. (Issue #671)


	Fix httplib.IncompleteRead not getting converted to
ProtocolError when using HTTPResponse.stream()
(Issue #674)







1.10.4 (2015-05-03)


	Migrate tests to Tornado 4. (Issue #594)


	Append default warning configuration rather than overwrite.
(Issue #603)


	Fix streaming decoding regression. (Issue #595)


	Fix chunked requests losing state across keep-alive connections.
(Issue #599)


	Fix hanging when chunked HEAD response has no body. (Issue #605)







1.10.3 (2015-04-21)


	Emit InsecurePlatformWarning when SSLContext object is missing.
(Issue #558)


	Fix regression of duplicate header keys being discarded.
(Issue #563)


	Response.stream() returns a generator for chunked responses.
(Issue #560)


	Set upper-bound timeout when waiting for a socket in PyOpenSSL.
(Issue #585)


	Work on platforms without ssl module for plain HTTP requests.
(Issue #587)


	Stop relying on the stdlib’s default cipher list. (Issue #588)







1.10.2 (2015-02-25)


	Fix file descriptor leakage on retries. (Issue #548)


	Removed RC4 from default cipher list. (Issue #551)


	Header performance improvements. (Issue #544)


	Fix PoolManager not obeying redirect retry settings. (Issue #553)







1.10.1 (2015-02-10)


	Pools can be used as context managers. (Issue #545)


	Don’t re-use connections which experienced an SSLError. (Issue #529)


	Don’t fail when gzip decoding an empty stream. (Issue #535)


	Add sha256 support for fingerprint verification. (Issue #540)


	Fixed handling of header values containing commas. (Issue #533)







1.10 (2014-12-14)


	Disabled SSLv3. (Issue #473)


	Add Url.url property to return the composed url string. (Issue #394)


	Fixed PyOpenSSL + gevent WantWriteError. (Issue #412)


	MaxRetryError.reason will always be an exception, not string.
(Issue #481)


	Fixed SSL-related timeouts not being detected as timeouts. (Issue #492)


	Py3: Use ssl.create_default_context() when available. (Issue #473)


	Emit InsecureRequestWarning for every insecure HTTPS request.
(Issue #496)


	Emit SecurityWarning when certificate has no subjectAltName.
(Issue #499)


	Close and discard sockets which experienced SSL-related errors.
(Issue #501)


	Handle body param in .request(...). (Issue #513)


	Respect timeout with HTTPS proxy. (Issue #505)


	PyOpenSSL: Handle ZeroReturnError exception. (Issue #520)







1.9.1 (2014-09-13)


	Apply socket arguments before binding. (Issue #427)


	More careful checks if fp-like object is closed. (Issue #435)


	Fixed packaging issues of some development-related files not
getting included. (Issue #440)


	Allow performing only fingerprint verification. (Issue #444)


	Emit SecurityWarning if system clock is waaay off. (Issue #445)


	Fixed PyOpenSSL compatibility with PyPy. (Issue #450)


	Fixed BrokenPipeError and ConnectionError handling in Py3.
(Issue #443)







1.9 (2014-07-04)


	Shuffled around development-related files. If you’re maintaining a distro
package of urllib3, you may need to tweak things. (Issue #415)


	Unverified HTTPS requests will trigger a warning on the first request. See
our new security documentation [https://urllib3.readthedocs.io/en/latest/security.html] for details.
(Issue #426)


	New retry logic and urllib3.util.retry.Retry configuration object.
(Issue #326)


	All raised exceptions should now wrapped in a
urllib3.exceptions.HTTPException-extending exception. (Issue #326)


	All errors during a retry-enabled request should be wrapped in
urllib3.exceptions.MaxRetryError, including timeout-related exceptions
which were previously exempt. Underlying error is accessible from the
.reason propery. (Issue #326)


	urllib3.exceptions.ConnectionError renamed to
urllib3.exceptions.ProtocolError. (Issue #326)


	Errors during response read (such as IncompleteRead) are now wrapped in
urllib3.exceptions.ProtocolError. (Issue #418)


	Requesting an empty host will raise urllib3.exceptions.LocationValueError.
(Issue #417)


	Catch read timeouts over SSL connections as
urllib3.exceptions.ReadTimeoutError. (Issue #419)


	Apply socket arguments before connecting. (Issue #427)







1.8.3 (2014-06-23)


	Fix TLS verification when using a proxy in Python 3.4.1. (Issue #385)


	Add disable_cache option to urllib3.util.make_headers. (Issue #393)


	Wrap socket.timeout exception with
urllib3.exceptions.ReadTimeoutError. (Issue #399)


	Fixed proxy-related bug where connections were being reused incorrectly.
(Issues #366, #369)


	Added socket_options keyword parameter which allows to define
setsockopt configuration of new sockets. (Issue #397)


	Removed HTTPConnection.tcp_nodelay in favor of
HTTPConnection.default_socket_options. (Issue #397)


	Fixed TypeError bug in Python 2.6.4. (Issue #411)







1.8.2 (2014-04-17)


	Fix urllib3.util not being included in the package.







1.8.1 (2014-04-17)


	Fix AppEngine bug of HTTPS requests going out as HTTP. (Issue #356)


	Don’t install dummyserver into site-packages as it’s only needed
for the test suite. (Issue #362)


	Added support for specifying source_address. (Issue #352)







1.8 (2014-03-04)


	Improved url parsing in urllib3.util.parse_url (properly parse ‘@’ in
username, and blank ports like ‘hostname:’).


	New urllib3.connection module which contains all the HTTPConnection
objects.


	Several urllib3.util.Timeout-related fixes. Also changed constructor
signature to a more sensible order. [Backwards incompatible]
(Issues #252, #262, #263)


	Use backports.ssl_match_hostname if it’s installed. (Issue #274)


	Added .tell() method to urllib3.response.HTTPResponse which
returns the number of bytes read so far. (Issue #277)


	Support for platforms without threading. (Issue #289)


	Expand default-port comparison in HTTPConnectionPool.is_same_host
to allow a pool with no specified port to be considered equal to to an
HTTP/HTTPS url with port 80/443 explicitly provided. (Issue #305)


	Improved default SSL/TLS settings to avoid vulnerabilities.
(Issue #309)


	Fixed urllib3.poolmanager.ProxyManager not retrying on connect errors.
(Issue #310)


	Disable Nagle’s Algorithm on the socket for non-proxies. A subset of requests
will send the entire HTTP request ~200 milliseconds faster; however, some of
the resulting TCP packets will be smaller. (Issue #254)


	Increased maximum number of SubjectAltNames in urllib3.contrib.pyopenssl
from the default 64 to 1024 in a single certificate. (Issue #318)


	Headers are now passed and stored as a custom
urllib3.collections_.HTTPHeaderDict object rather than a plain dict.
(Issue #329, #333)


	Headers no longer lose their case on Python 3. (Issue #236)


	urllib3.contrib.pyopenssl now uses the operating system’s default CA
certificates on inject. (Issue #332)


	Requests with retries=False will immediately raise any exceptions without
wrapping them in MaxRetryError. (Issue #348)


	Fixed open socket leak with SSL-related failures. (Issue #344, #348)







1.7.1 (2013-09-25)


	Added granular timeout support with new urllib3.util.Timeout class.
(Issue #231)


	Fixed Python 3.4 support. (Issue #238)







1.7 (2013-08-14)


	More exceptions are now pickle-able, with tests. (Issue #174)


	Fixed redirecting with relative URLs in Location header. (Issue #178)


	Support for relative urls in Location: ... header. (Issue #179)


	urllib3.response.HTTPResponse now inherits from io.IOBase for bonus
file-like functionality. (Issue #187)


	Passing assert_hostname=False when creating a HTTPSConnectionPool will
skip hostname verification for SSL connections. (Issue #194)


	New method urllib3.response.HTTPResponse.stream(...) which acts as a
generator wrapped around .read(...). (Issue #198)


	IPv6 url parsing enforces brackets around the hostname. (Issue #199)


	Fixed thread race condition in
urllib3.poolmanager.PoolManager.connection_from_host(...) (Issue #204)


	ProxyManager requests now include non-default port in Host: ...
header. (Issue #217)


	Added HTTPS proxy support in ProxyManager. (Issue #170 #139)


	New RequestField object can be passed to the fields=... param which
can specify headers. (Issue #220)


	Raise urllib3.exceptions.ProxyError when connecting to proxy fails.
(Issue #221)


	Use international headers when posting file names. (Issue #119)


	Improved IPv6 support. (Issue #203)







1.6 (2013-04-25)


	Contrib: Optional SNI support for Py2 using PyOpenSSL. (Issue #156)


	ProxyManager automatically adds Host: ... header if not given.


	Improved SSL-related code. cert_req now optionally takes a string like
“REQUIRED” or “NONE”. Same with ssl_version takes strings like “SSLv23”
The string values reflect the suffix of the respective constant variable.
(Issue #130)


	Vendored socksipy now based on Anorov’s fork which handles unexpectedly
closed proxy connections and larger read buffers. (Issue #135)


	Ensure the connection is closed if no data is received, fixes connection leak
on some platforms. (Issue #133)


	Added SNI support for SSL/TLS connections on Py32+. (Issue #89)


	Tests fixed to be compatible with Py26 again. (Issue #125)


	Added ability to choose SSL version by passing an ssl.PROTOCOL_* constant
to the ssl_version parameter of HTTPSConnectionPool. (Issue #109)


	Allow an explicit content type to be specified when encoding file fields.
(Issue #126)


	Exceptions are now pickleable, with tests. (Issue #101)


	Fixed default headers not getting passed in some cases. (Issue #99)


	Treat “content-encoding” header value as case-insensitive, per RFC 2616
Section 3.5. (Issue #110)


	“Connection Refused” SocketErrors will get retried rather than raised.
(Issue #92)


	Updated vendored six, no longer overrides the global six module
namespace. (Issue #113)


	urllib3.exceptions.MaxRetryError contains a reason property holding
the exception that prompted the final retry. If reason is None then it
was due to a redirect. (Issue #92, #114)


	Fixed PoolManager.urlopen() from not redirecting more than once.
(Issue #149)


	Don’t assume Content-Type: text/plain for multi-part encoding parameters
that are not files. (Issue #111)


	Pass strict param down to httplib.HTTPConnection. (Issue #122)


	Added mechanism to verify SSL certificates by fingerprint (md5, sha1) or
against an arbitrary hostname (when connecting by IP or for misconfigured
servers). (Issue #140)


	Streaming decompression support. (Issue #159)







1.5 (2012-08-02)


	Added urllib3.add_stderr_logger() for quickly enabling STDERR debug
logging in urllib3.


	Native full URL parsing (including auth, path, query, fragment) available in
urllib3.util.parse_url(url).


	Built-in redirect will switch method to ‘GET’ if status code is 303.
(Issue #11)


	urllib3.PoolManager strips the scheme and host before sending the request
uri. (Issue #8)


	New urllib3.exceptions.DecodeError exception for when automatic decoding,
based on the Content-Type header, fails.


	Fixed bug with pool depletion and leaking connections (Issue #76). Added
explicit connection closing on pool eviction. Added
urllib3.PoolManager.clear().


	99% -> 100% unit test coverage.







1.4 (2012-06-16)


	Minor AppEngine-related fixes.


	Switched from mimetools.choose_boundary to uuid.uuid4().


	Improved url parsing. (Issue #73)


	IPv6 url support. (Issue #72)







1.3 (2012-03-25)


	Removed pre-1.0 deprecated API.


	Refactored helpers into a urllib3.util submodule.


	Fixed multipart encoding to support list-of-tuples for keys with multiple
values. (Issue #48)


	Fixed multiple Set-Cookie headers in response not getting merged properly in
Python 3. (Issue #53)


	AppEngine support with Py27. (Issue #61)


	Minor encode_multipart_formdata fixes related to Python 3 strings vs
bytes.







1.2.2 (2012-02-06)


	Fixed packaging bug of not shipping test-requirements.txt. (Issue #47)







1.2.1 (2012-02-05)


	Fixed another bug related to when ssl module is not available. (Issue #41)


	Location parsing errors now raise urllib3.exceptions.LocationParseError
which inherits from ValueError.







1.2 (2012-01-29)


	Added Python 3 support (tested on 3.2.2)


	Dropped Python 2.5 support (tested on 2.6.7, 2.7.2)


	Use select.poll instead of select.select for platforms that support
it.


	Use Queue.LifoQueue instead of Queue.Queue for more aggressive
connection reusing. Configurable by overriding ConnectionPool.QueueCls.


	Fixed ImportError during install when ssl module is not available.
(Issue #41)


	Fixed PoolManager redirects between schemes (such as HTTP -> HTTPS) not
completing properly. (Issue #28, uncovered by Issue #10 in v1.1)


	Ported dummyserver to use tornado instead of webob +
eventlet. Removed extraneous unsupported dummyserver testing backends.
Added socket-level tests.


	More tests. Achievement Unlocked: 99% Coverage.







1.1 (2012-01-07)


	Refactored dummyserver to its own root namespace module (used for
testing).


	Added hostname verification for VerifiedHTTPSConnection by vendoring in
Py32’s ssl_match_hostname. (Issue #25)


	Fixed cross-host HTTP redirects when using PoolManager. (Issue #10)


	Fixed decode_content being ignored when set through urlopen. (Issue
#27)


	Fixed timeout-related bugs. (Issues #17, #23)







1.0.2 (2011-11-04)


	Fixed typo in VerifiedHTTPSConnection which would only present as a bug if
you’re using the object manually. (Thanks pyos)


	Made RecentlyUsedContainer (and consequently PoolManager) more thread-safe by
wrapping the access log in a mutex. (Thanks @christer)


	Made RecentlyUsedContainer more dict-like (corrected __delitem__ and
__getitem__ behaviour), with tests. Shouldn’t affect core urllib3 code.







1.0.1 (2011-10-10)


	Fixed a bug where the same connection would get returned into the pool twice,
causing extraneous “HttpConnectionPool is full” log warnings.







1.0 (2011-10-08)


	Added PoolManager with LRU expiration of connections (tested and
documented).


	Added ProxyManager (needs tests, docs, and confirmation that it works
with HTTPS proxies).


	Added optional partial-read support for responses when
preload_content=False. You can now make requests and just read the headers
without loading the content.


	Made response decoding optional (default on, same as before).


	Added optional explicit boundary string for encode_multipart_formdata.


	Convenience request methods are now inherited from RequestMethods. Old
helpers like get_url and post_url should be abandoned in favour of
the new request(method, url, ...).


	Refactored code to be even more decoupled, reusable, and extendable.


	License header added to .py files.


	Embiggened the documentation: Lots of Sphinx-friendly docstrings in the code
and docs in docs/ and on urllib3.readthedocs.org.


	Embettered all the things!


	Started writing this file.







0.4.1 (2011-07-17)


	Minor bug fixes, code cleanup.







0.4 (2011-03-01)


	Better unicode support.


	Added VerifiedHTTPSConnection.


	Added NTLMConnectionPool in contrib.


	Minor improvements.







0.3.1 (2010-07-13)


	Added assert_host_name optional parameter. Now compatible with proxies.







0.3 (2009-12-10)


	Added HTTPS support.


	Minor bug fixes.


	Refactored, broken backwards compatibility with 0.2.


	API to be treated as stable from this version forward.







0.2 (2008-11-17)


	Added unit tests.


	Bug fixes.







0.1 (2008-11-16)


	First release.










          

      

      

    

  

    
      
          
            
  
Wheel

A built-package format for Python.

A wheel is a ZIP-format archive with a specially formatted filename
and the .whl extension. It is designed to contain all the files for a
PEP 376 compatible install in a way that is very close to the on-disk
format. Many packages will be properly installed with only the “Unpack”
step (simply extracting the file onto sys.path), and the unpacked archive
preserves enough information to “Spread” (copy data and scripts to their
final locations) at any later time.

The wheel project provides a bdist_wheel command for setuptools
(requires setuptools >= 0.8.0). Wheel files can be installed with a
newer pip from https://github.com/pypa/pip or with wheel’s own command
line utility.

The wheel documentation is at http://wheel.rtfd.org/. The file format
is documented in PEP 427 (http://www.python.org/dev/peps/pep-0427/).

The reference implementation is at https://github.com/pypa/wheel


Why not egg?

Python’s egg format predates the packaging related standards we have
today, the most important being PEP 376 “Database of Installed Python
Distributions” which specifies the .dist-info directory (instead of
.egg-info) and PEP 426 “Metadata for Python Software Packages 2.0”
which specifies how to express dependencies (instead of requires.txt
in .egg-info).

Wheel implements these things. It also provides a richer file naming
convention that communicates the Python implementation and ABI as well
as simply the language version used in a particular package.

Unlike .egg, wheel will be a fully-documented standard at the binary
level that is truly easy to install even if you do not want to use the
reference implementation.




Code of Conduct

Everyone interacting in the wheel project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].






0.30.0


	Added py-limited-api {cp32|cp33|cp34|…} flag to produce cpNN.abi3.{arch}
tags on CPython 3.


	Documented the license_file metadata key


	Improved Python, abi tagging for wheel convert. Thanks Ales Erjavec.


	Fixed > being prepended to lines starting with “From” in the long description


	Added support for specifying a build number (as per PEP 427).
Thanks Ian Cordasco.


	Made the order of files in generated ZIP files deterministic.
Thanks Matthias Bach.


	Made the order of requirements in metadata deterministic. Thanks Chris Lamb.


	Fixed wheel install clobbering existing files


	Improved the error message when trying to verify an unsigned wheel file


	Removed support for Python 2.6, 3.2 and 3.3.







0.29.0


	Fix compression type of files in archive (Issue #155, Pull Request #62,
thanks Xavier Fernandez)







0.28.0


	Fix file modes in archive (Issue #154)







0.27.0


	Support forcing a platform tag using –plat-name on pure-Python wheels, as
well as nonstandard platform tags on non-pure wheels (Pull Request #60, Issue
#144, thanks Andrés Díaz)


	Add SOABI tags to platform-specific wheels built for Python 2.X (Pull Request
#55, Issue #63, Issue #101)


	Support reproducible wheel files, wheels that can be rebuilt and will hash to
the same values as previous builds (Pull Request #52, Issue #143, thanks
Barry Warsaw)


	Support for changes in keyring >= 8.0 (Pull Request #61, thanks Jason R.
Coombs)


	Use the file context manager when checking if dependency_links.txt is empty,
fixes problems building wheels under PyPy on Windows  (Issue #150, thanks
Cosimo Lupo)


	Don’t attempt to (recursively) create a build directory ending with ..
(invalid on all platforms, but code was only executed on Windows) (Issue #91)


	Added the PyPA Code of Conduct (Pull Request #56)







0.26.0


	Fix multiple entrypoint comparison failure on Python 3 (Issue #148)







0.25.0


	Add Python 3.5 to tox configuration


	Deterministic (sorted) metadata


	Fix tagging for Python 3.5 compatibility


	Support py2-none-‘arch’ and py3-none-‘arch’ tags


	Treat data-only wheels as pure


	Write to temporary file and rename when using wheel install –force







0.24.0


	The python tag used for pure-python packages is now .pyN (major version
only). This change actually occurred in 0.23.0 when the –python-tag
option was added, but was not explicitly mentioned in the changelog then.


	wininst2wheel and egg2wheel removed. Use “wheel convert [archive]”
instead.


	Wheel now supports setuptools style conditional requirements via the
extras_require={} syntax. Separate ‘extra’ names from conditions using
the : character. Wheel’s own setup.py does this. (The empty-string
extra is the same as install_requires.) These conditional requirements
should work the same whether the package is installed by wheel or
by setup.py.







0.23.0


	Compatibility tag flags added to the bdist_wheel command


	sdist should include files necessary for tests


	‘wheel convert’ can now also convert unpacked eggs to wheel


	Rename pydist.json to metadata.json to avoid stepping on the PEP


	The –skip-scripts option has been removed, and not generating scripts is now
the default. The option was a temporary approach until installers could
generate scripts themselves. That is now the case with pip 1.5 and later.
Note that using pip 1.4 to install a wheel without scripts will leave the
installation without entry-point wrappers. The “wheel install-scripts”
command can be used to generate the scripts in such cases.


	Thank you contributors







0.22.0


	Include entry_points.txt, scripts a.k.a. commands, in experimental
pydist.json


	Improved test_requires parsing


	Python 2.6 fixes, “wheel version” command courtesy pombredanne







0.21.0


	Pregenerated scripts are the default again.


	“setup.py bdist_wheel –skip-scripts” turns them off.


	setuptools is no longer a listed requirement for the ‘wheel’
package. It is of course still required in order for bdist_wheel
to work.


	“python -m wheel” avoids importing pkg_resources until it’s necessary.







0.20.0


	No longer include console_scripts in wheels. Ordinary scripts (shell files,
standalone Python files) are included as usual.


	Include new command “python -m wheel install-scripts [distribution
[distribution …]]” to install the console_scripts (setuptools-style
scripts using pkg_resources) for a distribution.







0.19.0


	pymeta.json becomes pydist.json







0.18.0


	Python 3 Unicode improvements







0.17.0


	Support latest PEP-426 “pymeta.json” (json-format metadata)







0.16.0


	Python 2.6 compatibility bugfix (thanks John McFarlane)


	Non-prerelease version number







1.0.0a2


	Bugfix for C-extension tags for CPython 3.3 (using SOABI)







1.0.0a1


	Bugfix for bdist_wininst converter “wheel convert”


	Bugfix for dists where “is pure” is None instead of True or False







1.0.0a0


	Update for version 1.0 of Wheel (PEP accepted).


	Python 3 fix for moving Unicode Description to metadata body


	Include rudimentary API documentation in Sphinx (thanks Kevin Horn)







0.15.0


	Various improvements







0.14.0


	Changed the signature format to better comply with the current JWS spec.
Breaks all existing signatures.


	Include wheel unsign command to remove RECORD.jws from an archive.


	Put the description in the newly allowed payload section of PKG-INFO
(METADATA) files.







0.13.0


	Use distutils instead of sysconfig to get installation paths; can install
headers.


	Improve WheelFile() sort.


	Allow bootstrap installs without any pkg_resources.







0.12.0


	Unit test for wheel.tool.install







0.11.0


	API cleanup







0.10.3


	Scripts fixer fix







0.10.2


	Fix keygen







0.10.1


	Preserve attributes on install.







0.10.0


	Include a copy of pkg_resources. Wheel can now install into a virtualenv
that does not have distribute (though most packages still require
pkg_resources to actually work; wheel install distribute)


	Define a new setup.cfg section [wheel]. universal=1 will
apply the py2.py3-none-any tag for pure python wheels.







0.9.7


	Only import dirspec when needed. dirspec is only needed to find the
configuration for keygen/signing operations.







0.9.6


	requires-dist from setup.cfg overwrites any requirements from setup.py
Care must be taken that the requirements are the same in both cases,
or just always install from wheel.


	drop dirspec requirement on win32


	improved command line utility, adds ‘wheel convert [egg or wininst]’ to
convert legacy binary formats to wheel







0.9.5


	Wheel’s own wheel file can be executed by Python, and can install itself:
python wheel-0.9.5-py27-none-any/wheel install ...


	Use argparse; basic wheel install command should run with only stdlib
dependencies.


	Allow requires_dist in setup.cfg’s [metadata] section. In addition to
dependencies in setup.py, but will only be interpreted when installing
from wheel, not from sdist. Can be qualified with environment markers.







0.9.4


	Fix wheel.signatures in sdist







0.9.3


	Integrated digital signatures support without C extensions.


	Integrated “wheel install” command (single package, no dependency
resolution) including compatibility check.


	Support Python 3.3


	Use Metadata 1.3 (PEP 426)







0.9.2


	Automatic signing if WHEEL_TOOL points to the wheel binary


	Even more Python 3 fixes







0.9.1


	‘wheel sign’ uses the keys generated by ‘wheel keygen’ (instead of generating
a new key at random each time)


	Python 2/3 encoding/decoding fixes


	Run tests on Python 2.6 (without signature verification)







0.9


	Updated digital signatures scheme


	Python 3 support for digital signatures


	Always verify RECORD hashes on extract


	“wheel” command line tool to sign, verify, unpack wheel files







0.8


	none/any draft pep tags update


	improved wininst2wheel script


	doc changes and other improvements







0.7


	sort .dist-info at end of wheel archive


	Windows & Python 3 fixes from Paul Moore


	pep8


	scripts to convert wininst & egg to wheel







0.6


	require distribute >= 0.6.28


	stop using verlib







0.5


	working pretty well







0.4.2


	hyphenated name fix







0.4


	improve test coverage


	improve Windows compatibility


	include tox.ini courtesy of Marc Abramowitz


	draft hmac sha-256 signing function







0.3


	prototype egg2wheel conversion script







0.2


	Python 3 compatibility







0.1


	Initial version








          

      

      

    

  _images/volumes.png
volume






_images/atmo_cp0.png
& Atmosphere X

& C' 1Y @ Secure | https://atmo.cyverse.org/application/projects * O K

@ CYVERSE o Dashboard '@ Projects M Images @ Help upendra_35 ~

3 Projects oo P






_images/atmo_launch.png
& Atmosphere X upendra kumar ‘

& C (v @ Secure | https://atmo.cyverse.org/application/projects/6210/resources# % O [ ) © B e O

Launch an Instance / Basic Uptions

Basic Info Resources

Instance Name Allocation Source

workshop tutorial upendra_35

Base Image Version Provider

1.6 CyVerse Cloud - Marana

Project Instance Size

CCW2018 tiny1 (CPU: 1, Mem: 4 GB, Disk: 30 GB)

Allocation Used
14% of 168 AUs from upendra_35
|

Resources Instance will Use
Atotal 1 of 32 alloted CPUs
|

A total 4 of 128 alloted GBs of Memory
|

4= Back £+ Advanced Options CANCEL LAUNCH INSTANCE






_images/atmo-9.png
&

/
/ & Atmosphere X\

upendra kumar

CcC 0 ‘ @ Secure | https://atmo.cyverse.org/application/projects... i‘(‘ (0

& CYVERSE

o Dashboard & Projects M Images

£5% RESOURCES DETAILS

CCW2018

NEW 5] (+]

= Instances

You have not added any instances to this project.

B volumes

You have not added any volumes to this project.
M Images

You have not added any images to this project.

@ Links

You have not added any links to this project.

- PORe«O

upendra_35 v

£+ OPTIONS ¥






_static/ajax-loader.gif





_images/atmo_cp.png
& Atmosphere X upendra kumar ‘

& C (Y @ Secure | https://atmo.cyverse.org/application/pr... Yr | (O [ ) © B e O

Create Project

Project Name

CCw2018

Description

Container Camp Workshop 2018

CANCEL






_static/asc.gif





_images/auto_build-1.png
& Linked Accounts & Services - = X upendra kumar

& C (0 | @ Secure | https://hub.docker.com/account/authorized-services/ or Yy (E, @ B e O

'===' Q, Search Dashboard Explore Organizations Create . upendradevisetty

Account Settings Billing & Plans Linked Accounts & Services Notifications Licenses

Linked Accounts & Services

Linked Accounts

These account links are currently used for
Automated Builds, so that we can access your upendrak: upendra_35:
project lists and help you configure your Automated read/write access read/write access
Builds. Please note: A github/bitbucket account
can be connected to only one docker hub

account at a time.

Unlink Github Unlink Bitbucket






_images/auto_build-2.1.png
& Docker Hub X D upendra kumar

& > C 1 | @ Secure | https://hub.docker.com/add/automated-build/github/form/upendrak/fla... i‘(‘ @ Y PODOHe

By default Automated Builds will match branch names to Docker build tags. Click here to customize behavior.

Customize Autobuild Tags

Your image will build automatically when your source repository is pushed based on the following rules. Revert to default settings

Push Type Name Dockerfile Location Docker Tag
e -0 r e s
‘ Branch ~ ‘ All branches except master ’ ‘ / ’ ‘ Same as branch ’ -






_images/atmo_launch0.png
/
/ & Atmosphere X\

/ \

& CcC 0 ‘ @ Secure | https://atmo.cyverse.org/application/projects/6210/resources ‘ﬁ(‘ O 9 [

@ CYVERSE o Dashboard '@ Projects ™ Images @ Help upendra_35 ~

222 RESOURCES DETAILS £+ oPTIONS ¥

CCW2018

Instance

stances to this project.





_images/atmo_launch1.png
& Atmosphere X upendra kumar ‘

& C 1Y @ Secure | https://atmo.cyverse.org/application/projects/6210/resources# % O 9 @ B e

Launch an Instance / Select an Image

First choose an image for your instance

Show Featured

Ubuntu 16.04

Showing 2 image(s) for "Ubuntu 16.04"

gbuntu 16.04 Non-GUI Bare Xenial cloud image Featured  Ubuntu
ase

Jul 18,2017 06:06 pm
by atmoadmin

. Imported Application - Ubuntu 16.04 GUI base  Featured  Ubuntu
XFCE Base XFCE Base

May 12,2017 03:28
am by atmoadmin

ubuntu1604 xfce






_images/auto_build-2.png
& Docker Hub X upendra kumar

&< C (0 | @& Secure | https://hub.docker.com/add/automated-build/github/form/upendrak/fla... ¥t Q’ Q) B e
e

Create Automated Build

Repository Namespace & Name*

upendradevisetty - flask-app
Visibility
public

Short Description*

Conainer Camp flask-app

By default Automated Builds will match branch names to Docker build tags. Click here to customize behavior.






_images/auto_build-5.png
@ upendradevisetty/flask-app - X upendra kumar

& > C {) | & Secure| https://hub.docker.com/r/upendradevisetty/flask-app/ x| G 0} | e

Dashboard  Explore  Orgar

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo  Tags  Dockerle  BuildDetails  Build Settings  Collaborators  Webhooks  Settings

Short Description @ Docker Pull Command [
Conainer Camp flask-app docker pull upendradevisetty
Full Description @ Owner

Full description is empty for this repo. upendradevisetty





_images/tmpfs.png
Filesystem

I Docker






_images/static_site_docker1.png
[ 128.196.142.26:32769 X

® 128.196.142.26:32769

Hello Docker!

This is being served from a docker
container running Nginx.

O

upendra kumar





_images/static_site_docker2.png
[ 0.0.0.0:32773

® 0.0.0.0:32773

Hello Docker!

This is being served from a docker
container running Nginx.

upendra kumar

(+]





_images/auto_build-6.png
<

@ upendradevisettyffiask-app - x |

upendra kumar

c O \ @ Secure | https://hub.docker.com/r/upendradevisetty/flask-app/~/settings/automated-builds/

* G prP0Ode

BUIla Setings

When active, builds will happen automatically on pushes.

The build rules below speciy how to build your source into Docker images. The name can be a string or a regex.
The Docker Tag name may contain variables. We currently support {sourceref), which refers to the source
branch/tag name. Show more

le) Source Repository
upendrak/flask-app

Type Name Dockerfle Location Docker Tag Name
ban < et e e | .
Branch ~ ‘ All branches except master ‘ ‘ / ‘ ‘ Same as branch -






nav.xhtml

    
      Table of Contents


      
        		
          Table of Contents
        


        		
          Workshop Code of Conduct
        


        		
          Pre-Workshop Setup
        


        		
          Agenda
        


        		
          About CyVerse
        


        		
          Training session in Docker
        


        		
          Training session in Singularity
        


        		
          Training session in scaling up your analysis using containers
        


        		
          Training session in Biocontainers
        


        		
          Booting an Atmosphere computer instance for your use!
        


        		
          Introduction to Docker
          
            		
              1. Prerequisites
            


            		
              2. Docker Installation
              
                		
                  2.1 Testing Docker installation
                


              


            


            		
              3. Running Docker containers from prebuilt images
            


            		
              4. Deploying web applications with Docker
              
                		
                  4.1 Deploying static website
                


                		
                  4.2 Deploying dynamic website
                


                		
                  Exercise (5-10 mins): Deploy a custom Docker image
                


              


            


            		
              5. Dockerfile commands summary
            


            		
              6. Demo’s
              
                		
                  6.1 Portainer
                


                		
                  6.2 Play-with-docker (PWD)
                


              


            


          


        


        		
          Advanced Docker
          
            		
              1. Docker registries
              
                		
                  1.1 Public repositories
                


                		
                  1.2 Private repositories
                


              


            


            		
              2. Automated Docker image building from github
              
                		
                  2.1 Prerequisites
                


                		
                  2.2 Link your Docker Hub account to GitHub
                


                		
                  2.3 Create a new automated build
                


                		
                  Exercise 1 (5-10 mins): Updating and automated building
                


              


            


            		
              3. Managing data in Docker
              
                		
                  3.1 Volumes
                


                		
                  3.2 Bind mounts
                


                		
                  3.3 tmpfs
                


              


            


            		
              4. Docker Compose for multi container apps
              
                		
                  Exercise 2 (10 mins)
                


              


            


            		
              5. Improving your data science workflow using Docker containers (Containerized Data Science)
            


          


        


        		
          Introduction to Singularity
          
            		
              1. Prerequisites
            


            		
              2. Singularity Installation
              
                		
                  Exercise 1 (15-20 mins)
                


                		
                  2.1 Setting up your Laptop
                


                		
                  2.2 HPC
                


                		
                  2.3 XSEDE Jetstream / CyVerse Atmosphere Clouds
                


                		
                  2.4 Check Installation
                


              


            


            		
              3. Downloading Singularity containers
              
                		
                  Exercise 2 (~10 mins)
                


                		
                  3.1: Pulling a Container from Singularity Hub
                


                		
                  Exercise 2.2: Pulling container from Docker Hub
                


              


            


            		
              4. Building Singularity containers locally
              
                		
                  Exercise 3: Creating the Singularity file (30 minutes)
                


              


            


            		
              5. Running Singularity Containers
              
                		
                  5.1 Using the exec command
                


                		
                  5.2 Using the shell command
                


                		
                  5.3 Using the run command
                


                		
                  5.4 Using the inspect command
                


                		
                  5.5 Using the –sandbox and –writable commands
                


                		
                  5.6 Test
                


                		
                  5.7 Bind Paths
                


                		
                  5.8 Overlay
                


              


            


          


        


        		
          Advanced Singularity
          
            		
              1. Using HPC Environments
              
                		
                  How do HPC systems fit into the development workflow?
                


              


            


            		
              2. Singularity and MPI
            


            		
              3. Singularity and GPU Computing
              
                		
                  Hands-On Exercise
                


              


            


          


        


        		
          Deploying apps in Discovery Environment
          
            		
              Deploying Docker images as apps in DE
            


          


        


        		
          OSG (Open Science Grid) Singularity Infrastructure
          
            		
              1. Prerequisites
            


            		
              2. OSG Overview
              
                		
                  2.1 Distributed High Throughput Computing
                


                		
                  2.2 Motivations for Containers in OSG
                


                		
                  2.3 Container Statistics
                


              


            


            		
              3. CVMFS
              
                		
                  3.1 cvmfs-singularity-sync
                


              


            


            		
              4. Exercise 1: Exploring Available Images
            


            		
              5. Exercise 2: Containerized Job - Default Image
            


            		
              6. Exercise 3: Containerized Job - Custom Image
            


          


        


        		
          Pegasus Workflows with Application Containers
          
            		
              1. Prerequisites
            


            		
              2. What are Scientific Workflows?
            


            		
              2. Pegasus Workflow Management System
            


            		
              3. Exercise 1: Without Containers
            


            		
              4. Exercise 2: With Containers
            


          


        


        		
          Distributed Computing with Makeflow and Work Queue
          
            		
              1. Prerequisites
            


            		
              2. Cooperative Computing Lab
            


            		
              2. Makeflow
            


            		
              2. Work Queue
            


            		
              3. Makeflow Tutorial
            


            		
              3.1. Running on Atmosphere/Jetstream
            


            		
              3.2. Download and Installation
            


            		
              3.3. Getting Makeflow-Examples
            


            		
              4.1. Makeflow Example
            


            		
              4.2. Running Makeflow with Work Queue
            


            		
              5. Using Containers with Makeflow
            


            		
              5.1. BLAST in a Container
            


            		
              5.2. BWA in a Container
            


            		
              5.3. Text Analysis in a Container
            


          


        


        		
          Introduction to Biocontainers
          
            		
              Developing biocontainers
              
                		
                  1. Docker based Biocontainers
                


                		
                  2. Bioconda based Biocontainers
                


              


            


            		
              The BioContainers Registry
            


          


        


        		
          Biocontainers in HPC
          
            		
              Installing thousands of apps on a cluster
            


          


        


        		
          Docker related resources
        


        		
          Singularity related resources
          
            		
              Singularity Talks
            


          


        


        		
          Other resources
        


        		
          For instructors!
        


        		
          Problems? Bugs? Questions?
        


      


    
  

_images/bind_mount.png
volume






_images/biocontainer-1.png
2 BioContainers Registry Ul X

upendra

kumar

C %  ® Not Secure | biocontainers.pro/registry/#/

§@BioContainers Registry Ul

Search...

Container

comet

samtools

blast

bcftools

biocontainers

tpp

All Containers and Tools in BioContainers (3567 !!1)

Description

an open source tandem mass spectrometry sequence database
search tool

Tools for manipulating next-generation sequencing data

basic local alignment search tool

variant calling and manipulating VCFs and BCFs

Biocontainers base Image

a collection of integrated tools for MS/MS proteomics

Real Name

biocontainers/comet

biocontainers/samtools

biocontainers/blast

biocontainers/bcftools

biocontainers/biocontainers

biocontainers/tpp

Last
Modified

21/01/2018

21/01/2018

02/02/2018

16/10/2017

22/01/2018

22/01/2018

% O 9 PORAeO

BioContainers

Starred/Starts Popularity Registry

o

,_
g 5
a >
Q
]

v U U
Q.

docker
> &

docker
5

Q
o*
[a

~

Q

4

GitHub






_images/auto_build-7.png
@ upendradevisetty/flask-app - X upendra kumar

& C (| @ secure | https:/hub.docker.com/rjupendradevisety)flask-app/builds/ ¥*| O ae

Q Search Dashboard Explore Organizations Create upendradevisetty

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo  Tags  Dockerfle  Build Details  Build Settings  Collaborators  Webhooks  Settings.

Status Actions Tag Created Last Source Repository
Updated
© upendrak/flask-app
amintes 212
v Success 10 seconds
ago

ago





_images/biocontainer-4.png
) Aliscore - Issue #165 - BioCon' X w Quay Container Registry - Quz X upendra kumar

& C 1Y @ GitHub, Inc. [US] | https://github.com/BioContainers/containers/issues/165 @ ¥ O 9 Q) B e O

Aliscore #165 [ Newissue |

(G L'l andzandz11 opened this issue on Jun 28, 2017 - 1 comment

.ﬁ. andzandz11 commented on Jun 28, 2017 +@ Assignees
No one assigned
request:
https://www.zfmk.de/en/research/research-centres-and-groups/aliscore Labels

Container Request

© 5 ypriverol added the |Container Request label on Jun 28, 2017

Projects
a delirehberi commented on Oct 11, 2017 Contributor  + (&) None yet
B &
We have created container. We will submit soon. Milestone

No milestone
https://hub.docker.com/r/eresbiotech/aliscore/

Notifications

M delirehberi referenced this issue on Oct 18, 2017
Aliscore v2.0 image added #187

«) Subscribe






_images/biocontainer-5.png
2 BioContainers Registry Ul X

C 1 @ biocontainers.pro/registry/#/showlmages?domain=quay&repository=khmer&starred=false&modified=06%2F09%2F2016

§@BioContainers Registry Ul

Summary of khmer ¥

(0 QUAY

o v

@v 162 @ Forks¥ 63

Container Pull Command

@ Last Updated on: 06/09/2016

khmer

Khmer is a library and suite of command line tools for working
with dna sequence. it is primarily aimed at short-read sequencing
data such as that produced by the illumina platform. khmer takes
a k-mer-centric approach to sequence analysis, hence the name.
Licence: Bsd-3-Clause

https://quay.io/repository/biocontainers/khmer

Bioinformatics

docker pull quay.io/biocontainers/khmer

*

upendra kumar

O 9 POoReO

BioContainers

GitHub






_images/biocontainer-2.png





_images/biocontainer-3.png
O Issues - BioContainers/contair X upendra kumar

@ GitHub, Inc. [US] | https://github.com/BioContainers/containers/issues a % O [ ) 2, e O
0 This repository Pull requests Issues Marketplace Explore
L] BioContainers / containers @ Watch~ 28  sUnstar 162  Y¥Fork 63
Code ®lIssues 44 Pull requests 3 Projects 0 Insights
& Want to submit an issue to BioContainers/containers? Dismiss

If you have a bug or an idea, browse the open issues before opening a new one. You can also
take a look at the Open Source Guide.
Issues labeled [[EIBMNaRtEE) can be good first contributions.

Filters ~ is:issue is:open Labels Milestones m

® 44 Open v 73 Closed Author ~ Labels ~ Projects ~ Milestones ~ Assignee v  Sort ~

@® dDocent container broken 31
#201 opened 14 days ago by WallyL






_images/catpic-1.png
[} localhost:8888 upendra kumar

® localhost

CAT GIF OF THE DAY

-
- ForGIESic@m

Courtesy: uzziced






_images/create_repo2.png
O upendrak/flask-app X upendra kumar

& C' () | @ GitHub, Inc. [US] | https://github.com/upendrak/flask-app aQ w O [ ] @ d e

...or push an existing repository from the command line

git remote add origin https://github.com/upendrak/flask-app.git B
git push -u origin master






_images/cyverse_rgb.png
& CYVERSE





_images/create_repo.png
&

() Create a New Repository X

upendra kumar

C 1Y @ GitHub, Inc. [US] | https://github.com/new

Owner Repository name
B upendrak ~ | flask-app

Great repository names are short and memorable. Need inspiration? How about friendly-bassoon.

Description (optional)

® Public

Anyone can see this repository. You choose who can commit.

(@) Private
You choose who can see and commit to this repository.

() Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing
repository.

Add .gitignore: None v Add a license: None v | ()

Create repository

Q ¥

O

B e






_images/docker_image.png
0 1 >

STARS PULLS pERts






_images/f1000.png
FIOOOResearch

F1000Research 2016, 5:1442 Last updated: 05 DEC 2016

@ CrossMark
& click for updates
SOFTWARE TOOL ARTICLE

Bringing your tools to CyVerse Discovery Environment
using Docker [version 3; referees: 3 approved]

Upendra Kumar Devisetty, Kathleen Kennedy, Paul Sarando, Nirav Merchant,
Eric Lyons

CyVerse, University of Arizona, Tucson, AZ, 85721, USA





_images/dc-1.png
[ localhost:8888 X upendra kumar
¢« C v @ localhost:8888 ¢ | () 9 2 B e O

This Compose/Flask demo has been viewed 8 time(s).






_images/docker.png





_images/img_building_1.png
£~ Discovery Environment

X

upendra kumar ‘

& C 0 ‘ @ Secure | https://de.cyverse.org/de/

%* O @®=PORE e

[ Favorite Apps
[& My public apps
|5 shared with me

Manage Tools

¥ & + W] Blastdbcmd-single-2.6.0+  §
B a

Add Tool

* Tool Name:

Description:

* Version :

* Image name:
Tag:
Entrypoint:

Docker Hub URL:

5]

tensorflow_image_classifier

Tensorflow Image Classifier

1.0

upendradevisetty/tensorflow_image_classifier

1.0

oK || Cancel |

blastn_custom_outfmt6-
2.6.0+

> Upendra Kumar Devisetty
de R Rk Rk (0) ﬂ

Copy of Hisat2-build

Upendra Kumar Devisetty
RARARO)

edgeR (multifactorial pairwise $
comparisons)-3.0 for big data

Upendra Kumar Devisetty
ek Rk R (0)






_images/img_building_5.png
« - C 0O & https://de.cyverse.org/de/

@ CyVerse Discovery Environment

&= Apps
Apps ~ Workflow » Share v "’ Refresh | image classifier

Categories |«| Search results: 1 found for image classifier
I My Apps || Topic || Operation || HPC | Filter: Al ~

ﬁ Apps under development Name

[ Favorite Apps & Tensorflow image classifier - 1.0

[5 My public apps
[5] Shared with me





_images/img_building_6.png
Select a file e x|

Navigation '+ Image_classifier

o -

i ] tophat2-PE Viewing: | /iplant/home/shared/iplantcollaborative/example_data/Image_classifier

[y U tophat2-SE ""Name Last Modified Size
» (] tophat_aligner_pa | 16401288243_36112bd52f m.jpg 2019 Jan 8 16:47:14  54.92KB
& (] tophat_aligner_si
(] treeview
& (] trim-galore
& (. trimmomatic-0.33
b trinity
& (] trinity_normalize
& (] uncompress_files_
(. vbay
b vef_to_gff3
b vf_to_giff_4
i veontact
& () wordcount
. zmapqtl
() Image_classifier ~ Displaying 1 - 1 of 1
Selected file: 16401288243_36112bd52f_m.jpg






_images/img_building_3.png
/ €& Discovery Environment X\ upendra kumar

& cC 0O ‘ @ Secure | https://de.cyverse.org/de/ ﬂr‘ (0 [ ) B OB e

@ CyVerse Discovery &= Tensorflow image classifier - 1.0
Save 4 Preview » -] Command Line Order

‘_‘Apps 00000

| « Tensorflow image classifier - 1.0 B ils: .
App Items i« atensorfio ge e * Details & Manage Tools | Switch View

Apps ~  Workflow » Share» ' R ) - :
Tool used: ) [Select an item from the center panel to edit its properties.

Categories Section tensorflow_image_classifier 1.0 | 4 |

| My Apps || Topic || Operation || Section * App name:

[5J Apps under development
[J Favorite Apps

[5 My public apps Files/Folders
[ Shared with me

Tensorflow image classifier - 1.0 0)
* App description:
Tensorflow image classifier Python_app_Test
Multiple Input Files
Upendra Kumar Devisetty
* Image pics - O] a
* Input File:

| b= | Select a file Tensorflow image classifier - §
Input File 1.0

[TA File |[Rrowse Sponda ke o
Command line view Jpendra Kumar Devisetty
tensorflow_image_classifier file (0) ﬂ

w Upendra Kumar Devisetty M Upendra Kumar Devisetty

de () a de ()

g‘ Tensorflow image classi...






_images/img_building_4.png
Discovery Environment

Mudtiple Input Files

Files

Input File

18 File |Browse

Input Folder

&3 Folder w
Tt/ Wunserical Tnput -

Linto Temt

Command line view





_images/jn_login.png
~_
_ Home

& C v @ localhost:8888/tree

Z Jupyter

Files Running Clusters
Select items to perform actions on them.
(@] ~ B

O work

upendra kumar

O

- PORe«O

Logout

~

Upload New v || &

Name 4 Last Modified 4

5 months ago






_images/img_building_8.png
£~ Data: Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7 (]

Upload + File~ Edit~ Download v Share~ Metadata ~ Q—“ Refresh 4 Trash ~

Navigation * Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7 «
a TEST_-_NCBI_WGS_¢ Viewing: | /iplant/home/upendra_35/analyses/Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7
() TEST_-_NCBI_WGS_¢ Name
() TEST_-_NCBI_WGS_¢ (7 logs
(] TEST_-_NCBI_WGS_¢

£-16401288243_36112bd52f m.out

16401288243_36112bd52f m.out
v 16401288243_36112bd52

(] TEST_-_NCBI_WGS_¢ [ save ¥ Refresh Wrap Text Line Numbers
() TEST_-_NCBI_WGS_ daisy (score = 0.99785)
- < bee (score = 0.00009)
Gl TEST_-_NCBI WGS S speedboat (score = 0.00008)
() TEST_-_NCBI_WGS_¢ mitten (score = 0.00006)

a - c as 4 sulphur butterfly, sulfur butterfly (score = 0.00004)
TEST_-_NCBI_WGS_¢

(] TEST_-_NCBI_WGS_¢





_images/img_building_9.png





_images/jn_login3.png
~_~ /o~
__ Home X / _ demo_notebook X upendra kumar

C 1Y  ® localhost:8888/notebooks/demo_notebook.ipynb * O [ ] 2 B e O
: JUpyter demo_notebook Last Checkpoint: 2 minutes ago (autosaved) @ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted |Python3 (@)
+ x @B~ ¥ M B C Code RN=

In [1]: x = "Hello world!"

In [2]: x

Out[2]: 'Hello world!'

In [3]: f = open("out.txt", 'w')

In [4]: f.write(x)

Out[4]: 12






_images/jn_ss.png
& Search - Docker Hub X upendra kumar
& C (0 @ Secure | https://hub.docker.com/search/?isAutomated=08&isOfficial=0&page=1&pullCount=0&q=jupyter%2F.. ¥ (§ [ ) @ B e O

Docker Store is the new place to discover public Docker content. Check it out —

'===' Q jupyter/datascience-no Dashboard Explore Organizations Create . upendradevisetty

Repositories (4237)
All M
ok jupyter/datascience-notebook 200 500K+ >

public STARS PULLS DETAILS






_images/jn_login2.png
 Home X upendra kumar
<« C 1t | @ localhost:8888/tree * O 9 2 H e O
-2
~ Jupyter Logout
Files Running Clusters
Select items to perform actions on them. Upload |New~ &
— - Notebook: I
M | Julia 0.5.2 [
0 work o
s |
Other:
Text File
Folder

Terminal






_images/jn_login3.5.png
&

c

-~
__ Home

7 @ localhost:8888/tree#

Z Jupyter

Files

Running Clusters

Select items to perform actions on them.

v B
0 work

& demo_notebook.ipynb

upendra kumar

O

- PORe«O

Logout

Upload ' New~ &

Name 4 Last Modified 4
5 months ago
Running seconds ago

seconds ago






_static/file.png





_images/osg_container_breakdown.png
Container Breakdown

100% YV A — ~ -

— None 26168841

o — Jevmfs/singularity.opensciencegrid.org/opensciencegridosgvo-el6atest 16410316

— Jevmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-elatest 8950308

— Jevmfs/singularity.opensciencegrid.org/opensciencegridiosgvo-blaylockbklatest 133140

80% — Jevmfs/singularity.opensciencegrid.org/opensciencegridiensorflowatest 42089

— hupiixc-login opensciencegrid.org/scratch/eemusingularity/eem-currentimg 32220

o — Jevmfs/singularity.opensciencegrid.org/agladstein/simprilylatest 22450

— Jevmfs/singularity.opensciencegrid.org/drtmfigy/hjets herwigiatest 5204

— Jevmfs/singularity.opensciencegrid.org/vipac/fasig scalable radio_arraylatest 3045

60% = 3583

— Jevmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el6-felusiatest 1065

o — Jevmfs/singularity.opensciencegrid.org/rjones30/gluerciatest 614

— Jevmfs/singularity.opensciencegrid.org/opensciencegridiensorflow-gpuatest 155

— Jevmfs/singularity.opensciencegrid.org/adwasser/slomorlatest 135
0%
30%
20%
10%

0%

9716 1011 10116 1 115 121 12/16 " 1116 0 215





_static/plus.png





_static/minus.png





_static/up-pressed.png





_static/comment.png





_static/down-pressed.png





_static/desc.gif





_static/down.png





_images/atmo-6.png
/ & Atmosphere X \\; (2] ‘

& (& ‘ @ Secure | https://atmo.cyverse.org/application/projects/6210/resources pxg ‘

& CYVERSE

ol Dashboard '@ Projects M Images @ Help upendra_35 ~

222 RESOURCES DETAILS £+ OPTIONS ¥

CCwW2018

NEW 5] (+]

= Instances

| Name Status Activity IP Address Size Provider

1 %7 Ubuntu 16_04 Non-GUI Base @ Active N/A 128.196.142.86 Tiny1 CyVerse Cloud - Marana

B o .
©2018 CyVerse (¢ FEEDBACK & SUPPORT






_images/atmo-7.png
/ & Atmosphere x \ e ‘

& & ‘ @ Secure | https://atmo.cyverse.org/application/projects/6210/instances/36678 pig ‘
& CYVERSE
o Dashboard 'BW Projects M Images @ Help upendra_35 ~
Links

>_ Open Old Web Shell @

Open Web Shell @

©2018 CyVerse & FEEDBACK & SUPPORT






_images/atmo-1.png
y —
/ Jit, CyVerse Authentication Servic x N e

& (& ‘ & Secure | https://auth.iplantcollaborative.org/cas4/login?service=https % 3A%2F %2Fauth.iplantco... o« i‘(‘

& CYVERSE
CyVerse Authentication Service

Enter your Username and
Password

Username:

Password:

[T} Warn me before logging me into other
sites.

LOGIN| clear Register






_images/atmo-8.png
,’/ & Atmosphere X\ upendra kumar

&< cC 0O ‘i Secure | https://atmo.cyverse.org/application/project... ﬂr\‘ (0 [ ) BOHR e O

& CYVERSE

il Dashboard '@ Projects M Images @ Help upendra_35 ~

C Redeploy
Links
>_ Open Old Web Shell &

Open Web Shell &






_images/pegasus_diamond.png





_images/pegasus_montage_dax.png





_images/osg_cvmfs.png
uuuuuu






_images/osg_map.png
@ open SCienCe Grld A national, distrlbuted computing partnership for data-Intensive research

StatusMap | Jobs CPUHours Transfers  TB Transferred Lzl
: 346,000 Jobs

4,696,000  CPU Hours
onTARIO auesc 7,784,000 Transters
989  TB Transfers

Site (None)

NoRTH . In the last 30 Days

; i - e : 9,352,000 Jobs

oo T AN NOVATs oA 129,774,000  CPU Hours
X 4 R o 3 246,118,000 Transfers
{OUORAD 5 y ’ (@ oeM In the last 12 Months
28 v ¢ 142,588,000 Jobs
1,585,993,000  CPU Hours
2,220,289,000 Transfers

P Lovi M ol 195,000 TB Transfers

Houston

OSG delivered across 126 sites

Gulf of
Mexico

Wi 44687018 Google. INEGI | Terms of Use






_images/pegasus_split_wf.png





_images/pegasus_montage_result.png





_images/pegasus_split_dag.png





_static/bg.gif





_static/comment-close.png





_static/comment-bright.png





_images/osg_container_count.png
Container Instance Jobs
900K

800K

700K

023 101 108 10116 10024 11 1we s 13 21 128 12/16 12124 " 18 1116 1024 n 28 s w2

= Count





_images/pwd.png
&

[ Play with Docker X upendra kumar

CcC 0 \ @ Secure | https://labs.play-with-docker.com i‘z\ O 9 Q] B e O

Contribute

Play with Docker

A simple, interactive and fun playground to learn Docker






_images/rstudio_login2.png
&

/€ Rstudio Sign In

X\

upendra kumar

C O © Not Secure | 0.0.0.0:8787/auth-sign-in

| O

eStudio

Username:

Sign in to RStudio

Password:

("] Stay signed in

[

PORAeO






_images/rstudio_ss.png
@& Search - Docker Hub X upendra kumar
&< C Y @ Secure | https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&g=rstudio&starCount=0 % (El [ ) Q) B e O

Docker Store is the new place to discover public Docker content. Check it out —

@‘ Q rstudio Dashboard Explore Organizations Create . upendradevisetty

Repositories (526)

All -

- rocker/rstudio 169 1M+ >
public | automated build STARS PULLS DETAILS






_images/rstudio_login.png
€) Rstudio X
® 0.0.0.0:8787
@ File Edit Code View Plots Session Build Debug
Q- ol?.\ @'v Go to file/function

Console  Terminal

R version 3.4.3 (2017-11-30) -- "Kite-Eating Tree"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Profile

~ Addins ~

Tools

=

Help

Environment

< 3

"}, Global Environment ~

History

Files Plots Packages
©7) New Folder = © | Upload
/I\ Home
A Name

kitematic

#” Import Dataset ~

or Yr

Connections

4

Environment is empty

Help Viewer

© Delete -] Rename

Size

upendra kumar

(+]
(O]

\M Project: (None) ~

rstudio

=0

List ~

=0
{}More v

Modified





_images/portainer_demo.png
. Portainer X

upendra kumar

C Y @ localhost:9000/#/dashboard

Eporfoiner.io Home
Dashboard
Name

Dashboard

App Templates Docker version
Containers = CPU

Images Memory

Networks

Volumes

e 4 % 3 running

Engine 2 1 stopped
Containers

User management

Endpoints

Registries .I.I

Settings Volumes

riqinarin 1158

moby

17.09.0-ce

21GCB

54

Images

9

Networks

Q] B« O
@ admin

#_my account ®_log out

¢ 315GB






_images/private_registry.png
@& Search - Docker Hub X upendra kumar
&< C (0 | @& Secure | https://hub.docker.com/search/?isAutomated=0&isOfficial=0&pag... Yt % [ ) Q) B e O

Docker Store is the new place to discover public Docker content. Check it out —

%‘ Q registry Dashboard Explore Organizations Create . upendradevisetty

Repositories (3031)

All <

-t registry 1.9K 10M+ )
official STARS PULLS DETAILS






_images/singularity.png





_images/static_site_docker.png
[ 0.0.0.0:32773

® 0.0.0.0:32773

Hello Docker!

This is being served from a docker
container running Nginx.

upendra kumar

(+]





_static/up.png





_images/singularity-2.4-flow.png
Build from Recipe Container Execution

Interactive Development
sudo singularity build container.img Singularity singularity run container.img
singularity exec container.img ...

sudo singularity build --writable container.img Singularity | ——
singularity pull shub://...

Build from Docker singularity pull docker://... *

sudo singularity build container.img docker://ubuntu

BUILD ENVIRONMENT : PRODUCTION ENVIRONMENT

* Docker construction from layers not guaranteed to replicate between pulls





